Application of PDF methods to compressible turbulent flows
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A particle method applying the probability density functidRDF approach to turbulent
compressible flows is presented. The method is applied to several turbulent flows, including the
compressible mixing layer, and good agreement is obtained with experimental data. The PDF
equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of
compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic
variables such as the pressure and the internal energy. The mean pressure, the determination of
which has been the object of active research over the last few years, is obtained directly from the
particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type
solver. The stochastic differential equatid®DE) which model the evolution of particle properties

are based on existing second-order closures for compressible turbulence, limited in application to
low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare
the performances of the PDF method with the Reynolds-stress closures from which it is derived, and
in homogeneous shear flows, at which stage comparison with direct numerical simgAi&h

data is conducted. The model is then applied to the plane compressible mixing layer, reproducing
the well-known decrease in the spreading rate with increasing compressibility. It must be
emphasized that the goal of this paper is not as much to assess the performance of models of
compressibility effects, as it is to present an innovative and consistent PDF formulation designed for
turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with
supersonic reacting flows. @997 American Institute of Physids$$1070-663(97)01709-1

I. INTRODUCTION ties such as the mean pressure, to flows with weak pressure
gradients.

Over the past few years, renewed interest in supersonic  Only recently have PDF methods been applied to flows
aircraft and high-speed combustion has emphasized the neggith pressure-induced density variatidfis?’ requiring in
for research in the field of compressible turbulence. Imporgeneral(except reference 2%oupling with a finite-volume
tant theoretical results have been established and revitwedsolver of some kind. The problem of determining the mean
allowing a better understanding of the complex phenomengaressure directly from the particle properti@s., without a
involved in compressible turbulence. Extensive experimentafinite-volume solveris closely related to the difficulties en-
work has been conducted, especially in the case of the planguntered in trying to extend PDF formulation to complex
compressible mixing layer:® In the turbulence modelling compressible flows.
community, the limitations of existing incompressible turbu-  The objective of the present work is to extend the exist-
lence models have been establishi&8econd-order closures ing PDF models to compressible reacting flows with arbi-
have been designed to represent explicit compressibility eftrary pressure gradients, with the aim of developing a stand-
fects, such as the compressible dissipation and the pressuretone method to solve for the joint PDF of all relevant flow
dilatation correlatiort'™*® The need for future research, in variables, including the dissipation rate of turbulent kinetic
both understanding and modelling the effects of compressenergy, without coupling with a pressure algorithm. By do-
ibility on turbulence, has been clearly establish2tf ing so we hope to exploit fully, in a simple and computation-

For flows involving combustion, probability density ally efficient way, the remarkable potential offered by PDF
function (PDF) methods have demonstrated their ability to methods to solve for complex turbulent reacting flows.
treat the important processes of reaction and convection For the definition of the method, henceforth, we restrict
exactly?® making transport and reaction models used in or-ourselves to nonreacting flows. It is believed, however, that
dinary PDE solvers unnecessary. The modelled transpo#xtension of the method to account for the reaction will be
equation for the joint PDF of velocity and composition hasstraightforward. The method has been successfully imple-
been successfully solved, using sets of stochastic particlagented for homogeneous compressible flghance it deals
with time-evolving properties to model fluid partic®s?®>  with unsteady flows without coupling with a finite-volume
Recent works include the development of models for thesolver, a feature displayed only by recent work using
velocity-dissipation joint PDE*?* However, the majority of  smoothed particle hydrodynamfds and statistically station-
applications is limited to low Mach number flows and, with- ary inhomogeneous flows. A unique feature of the method is
out coupling to a finite-volume type solver to obtain quanti-the inclusion in the joint PDF of two extra thermodynamic
variables, namely the pressure and the internal energy.
dPresent address: Electricide France, Laboratoire National d’Hydraulique, Hence, all statistics of the flow, including the mean pressure,
78401 Chatou, France. can be determined directly from the particle properties. A
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finite-volume type solver is therefore unnecessary. In addiwhere e;=1{w{ w/) is the standard solenoidal dissipation,
tion, models have been derived from existing Reynolds stresand sd:4/3v(ui’,iz) is the so-calleddilatation dissipation
closures to account for the compressible dissipation and thehich is clearly zero in incompressible flows, and strictly
pressure—dilatation correlation. positive in compressible flows, thus amounting to extra dis-

In section Il we review some general effects of com-sipation. We see that ifl) three explicit terms arising from
pressibility on turbulent flows, as well as second-order clocompressibility need to be modelled;, 114, and the last
sures from which our PDF formulation is inspired. It is em-term, which arises because the Reynolds aver&ggs of
phasized that the purpose of this work is neither to develogravre fluctuations are nonzero. The last term is probably
new models for compressibility effects on turbulence, nor tovery small in flows without large pressure gradients and
test existing models, but to develop an innovative and conaway from walls. We therefore choose to neglect it. We
sistent PDF formulation designed for high-speed combusneed, however, to model the other two.
tion. In section Il we detail the PDF formulation which is For the dilatation dissipation, we use the model of Sarkar
the object of this work, summarizing briefly the general ideaet al! relatinge4 to ¢, in the following way:
behind PDF methods, then defining our stochastic variables 2
and the corresponding stochastic differential equations &4~ CaMi®s. 2
(SDBE). In section IV we present results for homogeneous\NhereMt2:2k/’52 is the turbulent Mach number squaréd,
flows. In section V, we extend the model to inhomogeneougyeing the mean speed of sound. This model was developed
flows. At this point a comparison is made between modefy M, <1. The constant, is of order 1. Equatiof2) relates
results and experimental data in the supersonic mixing layee dilatation dissipation to the solenoidal dissipation. It has
case. been arguetd!*that the energy cascade responsible for the
latter is moderately affected by compressibility, therefore
standard incompressible models for the solenoidal dissipa-
tion can be used in the present situation.

In compressible reacting flows, density variations arise ~ For the pressure dilatation, we use Zeman's mddel,
because of variations in chemical composition, and of temwhich can be summarized in the following two equations:
perature and pressure fluctuations. While all these effects 1 D(p'?

Il. MODELS FOR THE EFFECTS OF
COMPRESSIBILITY ON TURBULENCE

contribute to create nonzero dilatation rates, only the latter [[;=—- —— , ®)
are termed compressibility effects. In the following discus- 2y(p) Dt

sion, we consider an inert flow and therefore ignore the ef- D(p'?) <p72>_p2

fects of a chemical reaction on the density. =— <, (4)

Consider the equation for turbulent kinetic energy in Dt Ta

compressible flow: The first equation is valid in homogeneous turbulence for
ok ok a(p) M;<1, anq for_high Reynolds andae_t numbers. The sec-
(p}—t+<p>ui—_=T+ P+Hd—(p>g—<ui”><— ond equation is fully modelled, relying on the results of
J X X Sarkaret al,!*?®and stating that pressure variance relaxes to
o(Tij) an equilibrium levelp, on the acoustic time scalg, . These
——), (1) two model quantities are defined in Zemamhe pressure—

IX; . o ; ) L
! dilatation is expected to be important in nonequilibrium

where flows, namely in flows with a strong dependence on initial
911 conditions, for instance decaying isotropic turbulence. It is
T=- K(E(p)ug’u}’u{#(p’u{’)—(uj’ri’j ) expected to be of lesser importance in equilibrium flows, for
! instance most free shear flows without shocks. To date, most
is the transport term, models forl14%1>%3re restricted to weakly inhomogeneous
—~ turbulence.
P _<p>m'j,‘9_ui _ The models for bothb,d_and I1y are restric_ted to flows
IX; with M;<1. In our calculations, for example, in mixing lay-
is the production term, ers with free stream Mach numbers as high as 6.5, we never
encountered values &, above 0.5, which has been consid-
.= ,19_Ui' ered to fall within the range of applicability of these models.
a=\P X The above discussion is centered exclusively on model-

ling from the point of view of the turbulent kinetic energy

calledpressure dilatationande is the viscous dissipation. In %quation, and not from the Reynolds stresses equation. The
P nance b ‘ models we have chosen will affect the turbulence in an iso-

(1), the brackets correspond 1o Reynolds averages and ﬂ%Fopic manner. Though it is known at this pdiht®that com-

primes to fluctuations about these averages, while the tildes - :
) . pressibility also, and probably chiefly, affects the turbulence
and double primes stand for Favre averages and fluctuation g L )
Yy modifying the deviatoric pressure-rate of strain correla-

. 4 . . . _
respectively. It has been showirt" that the viscous dissipa tion so that the redistribution of energy does not function as

tion can be split into two terms: well when the compressibility level is high, resulting in in-
e=¢gqtey, creased anisotropies in the normal stresses and decreased an-

is the trace of the pressure-rate of strain correlation, als
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isotropy in the shear stress€swe have chosen not to and pressure fluxes are all in closed form and hence the

modify our incompressible models for the pressure-rate oéquations for the thermodynamic variables require no addi-

strain correlation. As of yet, no general model is available fortional models.

this term, and it is still the object of ongoing research. Fur-

thermore, the above models — in particular the dilatationiil. THE PDF FORMULATION

dissipation model — have been shown to reproduce well- . : .
- A. The Eulerian mass—density function

known compressibility effects on turbulence such as the de-

crease in the spreading rate of a mixing layer when com- In a turbulent compressible flow, we may look at the

pressibility increase® It must be said, however, that recent flow propertiesU, o (turbulent frequency e, andp at any

results show that the decrease in the growth rate comdixed locationx and timet as random variables. If we denote

mainly from the pressure-rate of strain correlatifrit is the sample space variables associated with these random

therefore necessary to keep in mind that the models we afgow variables with a hatA(), we define the one-point Eule-

using may not be valid for a wide variety of flows, and may rian mass—density functior as

not be representing the dominant physical effects of com- NP . .

pressibility on turbulence. Let us emphasize at this point, 7 (U.®.8,p;x,t)=p(e,p)(S(U(x,t)—U)(w(x,t)

however, that the emphasis of this work is not on modelling, A ~ ~

but on extending the domain of applicability of PDF methods @) 3(e(x,1) =€) 8(p(x.1) = p)).

to compressible flows. As better models are developed for (7

the effects of compressibility on turbulence, it will be |, this definitions is the Dirac delta function.

straightforward to incorporate them in our PDF formulation. Statistics of the flow are computed with the moments of

. To complete this section, we net_ad to discuss the equaz Tpree important properties of are

tions for the two thermodynamic variables necessary to de-

scribe the state of the fluid. The continuity equation plays a I A

different role in PDF/Monte Carlo methods than in second- J 7dUdwdpde=(p(x1)), (8)

order closure methods. Its satisfaction is a requirement if the

particle ensemble — introduced in the next section — is to f 7Q*(U,w,p,e)dUdwdpde= (p(x,t)Q(x,t))

be a consistent representation of the fitfiéind not a means

for obtaining the fluid density if the velocity field is known. =<P>6, 9)

Therefore we do need two thermodynamic variables, both

different from the density, to describe the flow. For reasons A A A A A A A A ~

that will be given in the next section, we choose the pressure, f 7{QJU,w,e,p)dUdwdpde=(p)Q. (10)

P, and the spegﬂc |nter.nal energy, - In the above syste®* is any function of the flow variables
The evolution equations for the meaxp) ande, can j , o p, andQ=Q(xt) is defined as

be derived from the first law of thermodynamics and the .
equation of state for an ideal gas. They are Q(X,1)=Q* (U(X,1),w(X,1),e(x,t),p(x,t)).
p) p) If in eq. (9) we replaceQ* by Q*/p, we see that the inte-
P P ration over the sample space yields the Reynolds average
iy L= —1)e— AV—(v—DII g ple sp Yl Y ge,
ot (Un IX; ()= D= ¥p)A)=(y=Dlg instead of the Favre average:

ap'u;i) 1 “maa e as ]
v (5) f F——=Q*(U,w,p,e)dUdwdpde={ —pQ ) =(Q).
i p(e,p) P
AT Therefore, knowing” we can switch freely between Favre
M and Reynolds averages. Hence, as alluded to in the previous

x o section, no modelling of the mass fluxes is necessary.

(6)

The fluid is an ideal gasy being the ratio of specific heats,
andA =U; ; is the dilatation rate. In the above equations, we  In a Monte Carlo simulation of a flow with constant total
neglected terms corresponding to molecular heat flux andhassM, .7 is represented by an ensembleNfstochastic
mean viscous stress, both of which will be negligible in theparticles, each of massm=M/N, which model fluid par-
flows of interest in this paper. The turbulent pressure fluxesicles. The assumption of constant total mass does not affect
in (5) and energy fluxes i6) are unclosed. In addition, we the generality of the following analysis. In an actual numeri-
need to determine the Reynolds average of the dilatation rateal implementation, both the particle numtérand the par-

A. In second-order closure methods, the mean velocity equdicle massAm are allowed to vary, but taking this into ac-
tions only involve Favre averages of the velocity, and it iscount at this point would make the analysis unnecessarily
necessary to model the turbulent mass fluxpsu/) to  complicated.

switch between Favre and Reynolds averaging. Using the In our representation, each stochastic particlbas a
PDF formulation detailed in the next sectiamp modelling  positionx(), a velocityU®", a turbulent frequency(®), a
effort is requiredin this respect. The turbulent mass, energy,pressurep”), and a specific internal energf). All these

je _de
{p) 5 T (PIVige-=(pye—(p(A)~Tla—

B. Particle representation
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properties depend only on time and evolve according to Thereforedv* is known if dp* andde* are known. Equa-
modelled evolution equations. The discrete Lagrangiariion (16), as was stated above, is derived from the first law of

mass—density function is defined as thermodynamics: the first term on the right-hand side is the
N heat added through dissipative work, and the second term is
a0, 0.6,px0)=am2, sUV-0)8(0") o) the pressure work. - ) _
i=1 The dissipatiorz is equal tk{2(1+CyM;), where() is

A L ) a quantity derived from the turbulent frequeney . More

x 5(eV—e)s(p"—p)s(xV—x). detail onQ is to be found in Jayesh and Poffeand the
(11)  evolution equation fow™ is given at the end of this section.
No model is incorporated in e@l6) to account for molecu-

_The moments o7y give the statistics of particle prop- |5 transport. We are restricting our analysis to flows with
erties. We require these to model statistics of the flow. high Reynolds and et numbers.

Each stochastic particle is supposed, at the location ™ 1 'hressure equation is fully modelled. We write it in a

which it is occupying, to represent a single realization of thegeneral form:

flow. Therefore all particles are statistically equivalent, and

we can define the particle mass—densjtgs dp* =p* (Adt+BdW). (18
N 0 . We see that this SDE involves a Wiener proc&st),
QZAmzl (8(x=x))=M{8(x* —x)), (12 which has the following properties:
wherex* is the position of any stochastic particle in.1,N. (dw)=0,
This quantity is analogous to the fluid density 2\ _
. . . (dw)=dt.
For the particle system to be a valid representation of the
flow, we require the correspondence For a more exhaustive review of the properties of the Wiener
- process, see Pop@The two model coefficientd andB are
F=(7w1a, 13 given by
whereTz_ff‘/(m is the Eulerian density-weighted joint PDF 2
: . . S e B 1 HU;)
of fluid properties. This expression implies that the mean of A= —+ — |1+ —|—y——=+(y—1)QA(p* —(p)),
. .. . . } e* 2 y X;
a particle property conditional upon the particle location, ob
tained by computing the moments ©f)/q, is equal to the (19)
Favre average of the corresponding fluid property at that lo- 2
cation. Or, ifa(x,t) is a fluid property, andr*(t) the cor- Bzz&f 1~ i (20)
responding stochastic particle property, then we have Ta 0 ((pYa)? e
(a*|x)=a(X1), (14  In the above equationsQ,, p., and 7, are given by

o - Zemart® and 9=1—y 1.

g:fgfei];el?;izzrﬁ‘ (stl)d|()a(*|(st)a:nx>a.bbreV|atlon for the condi The coefficient®A andB in (19) and(20) are determined
so that the following two conditions are satisfied) the
specific volumev* satisfies, in the mean, the mean continu-
ity equation, andif) the pressure dilatation correlation has

C. Evolution equations for the particle properties the same form as in Zeman’s modglobtained by combin-
In this section we give the evolution equations for all ing eqs.(3) and (4):

particle propertiex*, e*, p*, U*, andw*. These are writ- (p'2)—p2

ten as stochastic differential equatiodSDE) in which Hd:p—fe_ (21

da*=da*(t) denotes the infinitesimal increment 27,(p)a’

a* (t+dt) — o* (t) for any stochastic particle property* .
The particles model fluid particles, and hence move wit
their own velocity:

hThis amounts to having the pressure variance evolve accord-
ing to eq.(4), to first order ian and in homogeneous flows.
However, in arbitrary flows, as we will see, the PDF pressure
dx* =U*dt. (15 variance equation is quite different, but the expression for
I14 is still eq.(22).

The form of Zeman’s model for the pressure—dilatation
is quite complicated. If a simpler, algebraic model such as
de* =edt—p*do*. (16) Sarkar's? were to be used, the expressions forand B

o, . would also become simpler. In the most general cadg, i
In the abpve equatlorw, refers to thf specific volume of_the the function of known flow statistics which gives the
stochastic particle, related & andp* through the equation pressure—dilatation, then we can rewdteas

of state, which for an ideal gas with constant specific heats

The internal energy evolves according to the first law of
thermodynamics:

reads as € oU;) fq (P~ (o))
=Y Y P*—=(pP)),
pru*=(y—1)e*. (17) s X T (p)p'?)
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andB can be taken to be zero. These modifications are validccording to Zeman’s model in both cases, and the turbulent
for any functionfy, including eq.(21). In the special case pressure and energy fluxes in closed form. The modelled
where the expression for this function contains terms whichurbulent kinetic energy equation reads as

are always negative — such as the termpinin Zeman'’s

model — these terms will be preferably incorporatedBin <p>(9_k+<p>[ji K__ 9 E(mm' )

resulting in a nonzero value for this model coefficient. This Jt 2 IXi\ 2 s

is the approach taken in this paper. If, however, none of the a0

terms inf is consistently negative, as is the case in Sarkar’'s _<P>Ui"U}' —J+Hd—<p>8.
model,B has to be zero, an8l has to be given by the above 28

expression. (24)

A unique feature of this formulation is that averaging of As we can see, the only terms that are not accounted for in
the pressure work* dv* over the stochastic particles yields this equation, let alone the terms we decided to neglect in the
the pressure dilatation correlatiam closed form The PDF  first section, are the pressure and viscous transport terms.
formulation preserves the physical meaning Ibf as the  Finally, the modelled pressure variance equation reads as
mean of the fluctuating pressure wark dv’. Hence, once

the evolution equations fqu* ande* are specified, no ad- }<p’2> §(E<p12>)
ditional modelling is required to obtain the pressure dilata- \ 2 (Uy) 2
tion. at ! IXi
There is a variety of ways to select the two thermody-
namic variables needed to describe the state of the ¥hiitl. = — (p' (A —(p'u! ap 1 i<pr2u/>
The choice ofe and p is advantageous for the following Yhaxi 29X !
reasons. There is a straightforward correspondence between —
the specific internal energy and the temperature in reacting YL+ (p)(y—1)ep’, (25

flows, and the evolution equation fe¥ can be derived from which we can compare with the true pressure variance evo-
simple physical principles. The choice pfallows us to con- |ution equationt:
trol the pressure variangg’?) so that it evolves according

to (4) in homogeneous turbulence and for Iy, and there- 4 _<pr2> 3(E<pr2>>
fore to represent the energy associated with pressure fluctua- 2 +(U,) 2
tions in compressible flow in the same way as Zeman’s at : X
model represents it. apy 14
The velocity evolves according to the simplified Lange- — _ Wp (A= (p'u/ a2 —(p"/)
vin model®* modified to account for the presenceldf; in % 29X
the turbulent kinetic energy equation: 2y—1
—¥(p) = —5—(p'?A"). (26)
. 1 (p) 110y 3 .
dui =— m (9—Xidt+ ﬂ(@_s( 1+ ECO) )(Ui As alluded to earlier, our model equati@b) is more com-
plete than eq(4) in inhomogeneous flows. It is very close to
—U,)dt+(Coe) YW, . (22)  eq.(26) (in which we omitted terms coming from molecular

transpor}t. The only difference lies in the last term of each
Accounts of the performance of this model can be found irequation, which we will prove to be negligible {25), and

Pope® The value of the model consta6y, is 2.1. which scales likeM%(p)I1, in (26), and is therefore negli-
Finally, the turbulent frequency evolves according to thegible compared to thép)Il, term. For the sake of clarity,
model equation of Jayesh and Pdpe: we omitted in(25) terms of orderM? or higher which we
already know to be negligible.
do*=—(0* -~ 0)C3Qdt-ww*S,dt IV. IMPLEMENTATION IN HOMOGENEOUS
+ (20.2500* Cgﬂ)llde. (23) TURBULENCE

A. Decaying isotropic turbulence
Details on the model and a brief review of its performance The purpose of this section is to compare the perfor-

can be found in Jayesh and Pdpe. mances of our formulation to those of a classical Reynolds

The stochastic differential equations detailed abovesyress closure using Zeman's and Sarkar's models. The only
[(15), (16), (18), (22), and(23)] yield an evolution equation jifference between PDF and second-order closure, in homo-

for.7y/q with no unclosed terms, which constitutes a modelgeneous isotropic turbulence, is that the pressure—dilatation
for the evglutlon equation of the one-point denS|ty—We|ghtedHd is related to{p’2) by eq.(3) in the latter case, whereas it
joint PDF f. The equations for the moments.gfy/q con- s obtained through direct averaging@fdv* in the former
stitute model equations for the corresponding moments.of case. Since, as was said before, the model has been designed
For instance, the evolution equation fée*|x) is strictly  so as to have the same expressionliigr[eg. (21)] in both
identical to (6), and the evolution equation for cases, we need to check tHat'2) also has the same value,
(py={(p*v*|x)/{v*|x) is identical to(5), with II4 modelled  or that the last term in eq25) is small compared tbl; — in
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FIG. 1. Turbulent Mach number and normalized pressure variance versusiG. 2. Turbulent Mach number and normalized pressure variance versus
time for the initial level of pressure fluctuatiok,=0.05 and various val- ~ time for the initial turbulent Mach numbed,=0.05 and various values of
ues of the initial turbulent Mach numb#t,, . the initial level of pressure fluctuatior$, .

which case the evolution equatio® and (25) will be vir- ) .
tually identical. Our result¢Figs. 1 and 2 show that the data by Sarkaet al.” Though this reference contains seven
agreement between the values of the pressure variance afiferent run conditions, there is only one set of initial con-
other statistics of the flowhere M,) in both methods is ditions consistent with our modelling assumptions.

excellent. Our method therefore provides an excellent PDF_~ Figure 4 shows a reasonable agreement with the data.

equivalent of a Reynolds-stress closure incorporating Zeml N€Se€ results are to be considered with much care, consider-
ing the limitations mentioned in section Il. In particular, the

an’s and Sarkar’'s models. S . .
Figure 3 shows that the Favre and Reynolds average@ducnon in the shear stress anisotropy which leads to a re-

can both be obtained with our method. Even in this case
there is a significant difference between both quantitiks-
played here for the specific internal energy, which is propor-

|13

tional to the temperatuye 190
Decaying turbulence exhibits a strong dependence on

initial conditions. For our problem, initial conditions depend 188

upon two parameters only, because the initial level of density &

fluctuations is set to zero: the initial turbulent Mach number ~ § ' f

Mo, and the initial level of pressure fluctuatioHs,. Figure E sl

1 corresponds to lovl, and highM,,, figure 2 to the op- N

Favre-average

posite situation. In both situations we observe a rapid ex- e Reynolds-average
change between pressure fluctuations and kinetic energy on
the acoustic time scale,, due toll, followed by viscous
decay of the turbulence.

B. Homogeneous shear flow t

In this section, the mean she8rU, , has a constant FG. 3. Reynolds versus Favre averaged temperatures, in thé/ggse®.5,
value set to §Ke;)g=7.2. We compare our results to DNS 11,=0.05.
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where(p) is the mean pressure field, defined at grid points
throughout the domain, and obtained using a separate algo-
rithm. Hence our PDF formulation is implemented in the
framework of a so-called particle-mesh method. At this point
it is important to note that the method described below to
obtain the pressure is not a full Navier—Stokes solver. It is
based on the solution of an elliptic equation for the pressure
on a given grid, using information supplied by the set of
stochastic particles. Other statistics, for example, the mean
velocity, are not solved for in the same way, but are averaged

2k/k,

Sarkar
T e Ristorcelli over the individual stochastic particle properties.

The evolution equation fop’* is derived from eq(18):

° ; Do dp'*=dp* —U* - V(p)dt, (27)
| L
FIG. 4. Turbulent kinetic energy versus normalized tind,,=0.3, wheredp* is given by eq(18). The average of the pressure

I1,=0.005. Solid line, PDF results based on Sarkar's modetforDashed  fluctuations evolving according t27) is zero in steady
line, PDF results based on Ristorcelli’'s model &gf. flows. The evolution equation fdip’?) is not modified. The

sole difference between this approach and the approach de-
tailed in the previous sections is that the mean presqure
duced productiolY is not accounted for. The good agreementis obtained by a pressure algorithm which makes it possible
of fig. 4 is therefore attributable in part to an excessive disto filter out the statistical error. The resulting pressure field
sipation. However, since we aim to reproduce basic effectsloes, however, obey the steady-state version of®q.
of compressibility such as the decreased growth rate of a To obtain the mean pressure, we base our approach on
compressible mixing layer, it is important that our modelthe steady-state mean continuity equation:
yields the correct evolution for the turbulent kinetic energy.

We also implemented a model by Ristorc€llfor the V-(pU)=0. (28)
compressible dissipationy, which yields a better agree-
ment. We nevertheless decided to retain the Saetal.
modef! in the following sections.

The idea of the algorithm is to correct the mean presépje
at each time steplt and at each grid point by an amount
&(p) so that(28) is satisfied at all times. The pressure cor-
rection brings about a density correctiafp (which we
V. INHOMOGENEOUS FLOWS: THE COMPRESSIBLE specify to take place at a constant specific engrgnd a
PLANE MIXING LAYER velocity correctiondU. These corrections are given by the
following formulae:

A. The mean pressure problem

A basic problem in PDF/Monte Carlo methods over the

past decade has been the determination of the mean pressure 9°= mﬁﬂo% (29
field. One issue is the reduction of statistical noise, inherent Y

to Monte Carlo simulations. Another one is the enforcement, 1

at the stochastic particle level, of mass conservation. Both §U=—-—V(&(p))dt. (30

problems have been addres&ethrough the use of a pres- {p)
sure algorithm based on the steady-state mean continuitypstituting forp+ sp and U+ U in (28), we obtain the
equation to determine the mean pressure field. equation fors(p):

In our case, the particle average pf, which evolves
according to eq(5), yields a pressure field which is ex- U
tremely close to the true pressure fiéft), and addresses the V. ( Y= 5<p>) —V2(&(p))dt=—V-{pU). (31
issue of mass conservation at the particle level — the analy- a

Sis is rather_ Iengthy and outside. the Scope of this_ PaPElrhis equation is solved at each time step &p). The par-
However, this particle averaged field contains conS|derabIrﬁcu|ar form of the 9-point Laplacian operator in this particle-

statistical noise, and we have to modify our approach in 'Mmesh discretization makes it necessary to filter the solution

homogeneous flows to eliminate this problem. The following,[0 remove an instability whose wavelength is twice the grid

analysis is Va"‘?'_'” steady f"?WS only. L size. This is done by using a simple centered filter, where the
_In the modified formulation, each pgrncle is no Iongervalue of the solution at a grid point is replaced by the
assigned a full pressure®, but afluctuating pressure ¥\ ciohted average of the values at the point and its north,
such that south, east, and west neighbors. The solution is finally
(p'y=0. smoothed to reduce statistical error, by using a standard
fourth-order artificial viscosity method. The mean pressure
(p) is then updated. In the process, mass conservation is
p*=(p)+p'*, enforced at the particle level. The particular way in which

The total pressure is recovered using
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the density is correctetht constant temperatyres arbitrary
but does not have any influence on the steady-state pressure
or density fields.
The first term in the left-hand side of e(@1) accounts
for all compressibility effects on the mean pressure field, ¢
including shocks and steady acoustic waves. The second
. . . - o6te
term is analogous to the Laplacian operator in the Poisson
equation for pressure in incompressible flows. It can be

B PDF, Momentum thickness
PDF, visual thickness
Langley curve

Papamoschou & Roshko
Elliott & Samimy

Petrie, Samimy & Addy
Tkawa & Kubota

Wagaer

® N,  ~---= Sarkar & Lakshmanan
Chinzei, Masva, Komuro, Murakami
Clerens & Mungal

Hall, Dimotakis & Rosemann

vAO4d D

shown that the first term is of ordev? compared to the 04r b TR
second, wher® is a characteristic Mach number. Therefore OO.A N |
in the limit of smallM, we recover the Poisson equation for ozr 4~ 3
pressure. In this approach, the pressure is considered as the
agent through which mass conservation is enforced. %% o5 o > 20

With this new approach, the pressure—dilatation correla- M.

tion is still the average of the fluctuating pressure work, and o _ ,
. . . . - FIG. 5. Growth rate reduction with increasiiy, . The big symbols are for
the pressure variance evolution equation is unmodified. Fur,

the present calculations, for both the momentum and the 0.1-0.9 thick-

thermore, the mean pressure figio), although smoother, nesses. The figure was partly reproduced from Ref. 33.

still satisfies the steady-state version of €&j). Therefore the

only limitation that we have introduced is the restriction of

the method to steady compressible flows. fined, and much less unique, in highly compressible flows. In

our case, however, the parameddy defined by(32) can

always be substituted fdvl, if the thermodynamic proper-

ties are matched in both streams, to the effect that the growth
The dimensional parameters needed to describe a mixingate ratio 8’/ 8y is a weaker function ofJ,/U;. M will

layer between two streams made of ideal gases are the fretiierefore correlate very well the effects of compressibility on

stream velocitiesU;, pressuresp;, densitiesp;, specific the shear layer growth rate, independently of the velocity

heat ratiosy;, and specific gas constari®, wherei=1,2  ratio.

correspond to the high- and low-speed streams, respectively. Figure 5 shows the present calculated growth rates com-

The corresponding nondimensional parameters are pared to experimental data and computer simulations. The

velocity ratios varied, for these calculations, between 0.2 and

Y2 P2 P2 Re - Yz M. 0.5. Our results are close to those of Sarkar and
¥1 P p1 Ry Lakshmanart? as can be expected since the compressiblity

For our growth rate calculations, we set the first four parameffects — namely, the compressible dissipation — are mod-

eters to 1, and take,=1.4. Under these conditions it is €lled in the same way. In an attempt to bring the calculated

convenient, in place d¥l,, to use theonvective Mach num- growth rates closer to the general scatter than Sarkar and
ber M, defined a3’ Lakshmanan did, the value &, that we chose was 2, and

theirs was 1, which accounts for the slight discrepancy be-
M :Ul_UZ (32) tween the two curves. Overall, our results still lie in the
¢ 2a ' i
upper region of the scatter.

wherea is the speed of sound, identical in both streams. The ~ Figures 6 and 7 show the effect of convective Mach

. - 2
spreading rate of the shear layer in the self-similar region i§|umbe;\r on the self-similar turbulence profiles, héce?)
a nondimensional constant, and therefore it is related to th@nd(u'v"). The velocity ratio was set to 0.5 for all the runs,

only varying nondimensional parameters by

5’—d5—f Y2 \ 33
_&_ U_ll cl- ( )

B. Growth rate calculations

The mixing layer widths is defined as the 0.1-0.9 thickness, 0030
which is the distance between the points at which the mean
velocity is U,+0.1AU and U,+0.9AU, respectively. To
measure the effects of compressibility 6h we measure the
quantity 8’/ 5; where s}, is the incompressible growth rate at
the same velocity ratio, obtained by settiMy, to zero in
(33). ReplacingM; by M. in the initial set of nondimen- 0010k
sional parameters has the effect ti#td; is a very weak
function of the velocity ratid.

It is emphasized at this point that the above dimensional 0.000 L2 .
analysis contains no large-scale structures considerations. It -3 2
has been fourfdthat the convective Mach number, whose  EE— — —————
existence depends on such structidrésis not always de-  FIG. 6. The effect oM on self-similar streamwise turbulence intensity.

0.020 ¢

{w?ysAu?
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FIG. 7. The effect oM on self-similar Reynolds shear stress. . . L L .
FIG. 8. Mean streamwise velocity profiles in the self-similar region.

therefore onlyM . varies. Compressibility reduces the inten-

sity of the turbulence in a symmetric way, over the wholethe self-similar region, for a subset of cases: case 1 for
width of the layer. Shown for comparison are the incom-Samimyet al, cases 2 and 4 for Duttogt al., and the PDF
pressible profiles f1.=0) for the same velocity ratio. We runs corresponding to the Samimy cases. The other cases are
can see that the growth rate reduction is attributable, with ounot shown for the sake of not overloading the plot. As is
model, to an overall decrease in the turbulence intensitgvident on the figure, the profiles collapse very well on a

across the layer. single curve. It was observed, in both the PDF calculations
and the experiments, that the mean streamwise velocity pro-
C. Comparison with experimental data files became self-similar earlier than the turbulent stress pro-

. . . . iles.
In this section we compare our results with expenmentar . : :
data by Samimyet al*57 and Dutton et al®® Although Figures 9 and 10 show the streamwise turbulence inten

. . .. sity for the PDF calculations and the experiments. It is foun
growth rate measurements are abundant in the literature, |t1[Sty or the calculations and the experiments. Itis found

. : Rat the agreement is excellent with the Samiatyal. re-
not so for mean and turbulent velocity profiles. The abovesults, but not as good for the Duttet al. results. In fact,

references were the only ones known to the authors at thI?)utton et al. found that the streamwise turbulent intensity

tlmelr?fb\é)vtrrl]tlggis of experiments. the convective Mach num_showed very little variation wittM ., which was not the case
. . P - . for Samimy et al. Our results are closer to the findings of
ber was varied simultaneously with the pressure ratio, denz

. : . : . Samimyet al, though the model does not seem to reproduce
sity ratio, and velocity ratio. Though Duttoet al. studied 'my ug produ

. . the preferential decrease in turbulence intensity in the high-
seven cases in all, and Samimyal. three, we chose two spegd side y 9

cases out of ea_ch set with similar conyectlve Mach numbers: Figures 11 and 12 show the Reynolds shear stress for the
0.46 and 0.86 in the Duttoet al. experimentqcases 2 and . . :
PDF calculations and the experiments. Again, the agreement

489 and 0.51 and 0.86 in the Samingt al. experiments - . :
(c:)ses 1 and“d). For each case we rgr?lthe PDpF code with's very good with the Samimgt al. data, and not as good for
' the Duttonet al. set, though better than in the previous plot.

the corresponding set of nondimensional parameters. Our re-
sults will therefore allow us not only to assess the perfor-
mance of the PDF model, but also to compare both sets of

experimental results. The nondimensional parameters corre- OB bpEM,=051
sponding to each case are summarized in table I. ° Samimy & Elliott, M, = 0.51
Figure 8 shows the mean streamwise velocity profiles, in 020 77T PDF, M, =0.86
5 = Samimy & Elliott, M, = 0.86
<
\=I
TABLE |. Nondimensional parameters for Samirey al. and Duttonet al. G 015
experiments.
: . 0.10 |
Case Samimy 1 Dutton 2 Samimy 3 Dutton 4
U,/U, 0.36 0.57 0.25 0.16 oos |
P2 /p1 1.03 1 1 1 :
palpy 0.64 1.55 0.37 0.60
Ry /Ry 1 1 1 1 0.00
voly, 1 1 1 1
" 1.4 1.4 1.4 1.4
M{,M», 1.80, 0.51 1.91, 1.36 3.01, 0.45 2.35, 0.30
M, 0.51 0.46 0.86 0.86 FIG. 9. Streamwise turbulent intensity. A comparison between PDF calcu-
lations and Samimt al. data.
2712 Phys. Fluids, Vol. 9, No. 9, September 1997 B. J. Delarue and S. B. Pope

Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



025

PDF, M, =0.46 - PDF,M,= 0.46
L4 Dutton et al., M, =0.46 0012} ® Dutton et at., M, =0.46
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~ <
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r_FIG. 12. Reynolds shear stress. A comparison between the PDF calculation

FIG. 10. Streamwise turbulent intensity. A comparison between the PD
and Duttonet al. data.

calculations and Duttoet al. data.

This is to be expected, since it has been sHbwhat in reasonable run times. Samimy and Elliott used 4096

compressible mixing layers the normalized Reynolds shea?amlr;lebs' A mln(;n;um number of Z?I_T]ple? for_th;)s rr?orr]nent
stress scales with the normalized growth rate. The closef/OU'd b€ around four times as muciheretore in both the

agreement, in this case, between our calculations and tHgalculations and the experiments the minimum number of

Dutton et al. data is therefore a consequence of the agree§amples was not reached, and statistical error is still impor-
' nt.

ment between our growth rate calculations and the gener ant. , -
scatter, as shown in fig. 5. Figure 14 shows the correlation coefficient between the
Fig,ure 13 shows the lateral convection of turbulent ki-Strea@mwise and the lateral turbulent velocity fluctuations.

netic energy. It is a third moment, and therefore easily caBoth experiments show that the correlation coefficient is

culated if one knows the one-point density-weighted jointWeakly affected by compressibility. We compared in this

PDET. The aareement between our calculations and ex erlx;ase the results with different PDF calculations, done at
' gr b M.=0 and M =1.15. It is found that not only does the
mental results is reasonable, but not as good as for the segy

. orrelation coefficient vary weakly witM ., it is also ver
ond moments: the PDF model seems to underpredict the im: Y y N y

) . . lose to the incompressible value across the whole layer.
portance of this transport term. This might contribute to theFuture turbulence models for compressibility effects should

ogserve? tﬁm?"err\?ﬁ“:ﬁ O;E;EG tll“'rblulteinﬁe mteinsnzio'lnn'f[hi?t]herefore attempt to reproduce this result, which is common
edges of the faye © caiculations, as 15 evident W, 1, ,1h qets of experiments.

figs. 9 and 10. We should, however, mention the importance . . :
L L . X Overall, it is found that the agreement with experimental
of statistical noise in both our calculations and the experi-

) . ata is very good for the Saminst al. set, and reasonable
ments, which becomes larger as one measures h|gher-ord% y 9 et

) ) . . or the Duttonet al. set. The limited amount of available
moments. The sampling region over which the third momen . .
; ) .~ data, however, precludes us from drawing extensive conclu-
was calculated contained approximately 10000 particles,.

which is the maximum that could be reached while achieving

0.0020
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0012 | e L
L4 Samimy & Eliiott, M, = 0.51 00010 b
w O
------- PDF, M, =0.86 =
« OO0} - ; . <
5 Samimy & Ellioit, M, = 0.86 ~
< =
= o008} o0
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FIG. 11. Reynolds shear stress. A comparison between the PDF calculatidflG. 13. Lateral convection of turbulent kinetic energy in the self-similar
and Samimyet al. data. region.
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