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A particle method applying the probability density function~PDF! approach to turbulent
compressible flows is presented. The method is applied to several turbulent flows, including the
compressible mixing layer, and good agreement is obtained with experimental data. The PDF
equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of
compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic
variables such as the pressure and the internal energy. The mean pressure, the determination of
which has been the object of active research over the last few years, is obtained directly from the
particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type
solver. The stochastic differential equations~SDE! which model the evolution of particle properties
are based on existing second-order closures for compressible turbulence, limited in application to
low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare
the performances of the PDF method with the Reynolds-stress closures from which it is derived, and
in homogeneous shear flows, at which stage comparison with direct numerical simulation~DNS!
data is conducted. The model is then applied to the plane compressible mixing layer, reproducing
the well-known decrease in the spreading rate with increasing compressibility. It must be
emphasized that the goal of this paper is not as much to assess the performance of models of
compressibility effects, as it is to present an innovative and consistent PDF formulation designed for
turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with
supersonic reacting flows. ©1997 American Institute of Physics.@S1070-6631~97!01709-1#
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I. INTRODUCTION

Over the past few years, renewed interest in supers
aircraft and high-speed combustion has emphasized the
for research in the field of compressible turbulence. Imp
tant theoretical results have been established and review1

allowing a better understanding of the complex phenom
involved in compressible turbulence. Extensive experime
work has been conducted, especially in the case of the p
compressible mixing layer.2–9 In the turbulence modelling
community, the limitations of existing incompressible turb
lence models have been established.10 Second-order closure
have been designed to represent explicit compressibility
fects, such as the compressible dissipation and the press
dilatation correlation.11–18 The need for future research, i
both understanding and modelling the effects of compre
ibility on turbulence, has been clearly established.10,19

For flows involving combustion, probability densit
function ~PDF! methods have demonstrated their ability
treat the important processes of reaction and convec
exactly,20 making transport and reaction models used in
dinary PDE solvers unnecessary. The modelled trans
equation for the joint PDF of velocity and composition h
been successfully solved, using sets of stochastic part
with time-evolving properties to model fluid particles.21,22

Recent works include the development of models for
velocity-dissipation joint PDF.23,24 However, the majority of
applications is limited to low Mach number flows and, wit
out coupling to a finite-volume type solver to obtain quan

a!Present address: Electricite´ de France, Laboratoire National d’Hydrauliqu
78401 Chatou, France.
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ties such as the mean pressure, to flows with weak pres
gradients.

Only recently have PDF methods been applied to flo
with pressure-induced density variations,25–27 requiring in
general~except reference 27! coupling with a finite-volume
solver of some kind. The problem of determining the me
pressure directly from the particle properties~i.e., without a
finite-volume solver! is closely related to the difficulties en
countered in trying to extend PDF formulation to compl
compressible flows.

The objective of the present work is to extend the ex
ing PDF models to compressible reacting flows with ar
trary pressure gradients, with the aim of developing a sta
alone method to solve for the joint PDF of all relevant flo
variables, including the dissipation rate of turbulent kine
energy, without coupling with a pressure algorithm. By d
ing so we hope to exploit fully, in a simple and computatio
ally efficient way, the remarkable potential offered by PD
methods to solve for complex turbulent reacting flows.

For the definition of the method, henceforth, we restr
ourselves to nonreacting flows. It is believed, however, t
extension of the method to account for the reaction will
straightforward. The method has been successfully imp
mented for homogeneous compressible flows~hence it deals
with unsteady flows without coupling with a finite-volum
solver, a feature displayed only by recent work usi
smoothed particle hydrodynamics27!, and statistically station-
ary inhomogeneous flows. A unique feature of the metho
the inclusion in the joint PDF of two extra thermodynam
variables, namely the pressure and the internal ene
Hence, all statistics of the flow, including the mean pressu
can be determined directly from the particle properties.
9(9)/2704/12/$10.00 © 1997 American Institute of Physics
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finite-volume type solver is therefore unnecessary. In ad
tion, models have been derived from existing Reynolds st
closures to account for the compressible dissipation and
pressure–dilatation correlation.

In section II we review some general effects of co
pressibility on turbulent flows, as well as second-order c
sures from which our PDF formulation is inspired. It is em
phasized that the purpose of this work is neither to deve
new models for compressibility effects on turbulence, nor
test existing models, but to develop an innovative and c
sistent PDF formulation designed for high-speed comb
tion. In section III we detail the PDF formulation which
the object of this work, summarizing briefly the general id
behind PDF methods, then defining our stochastic varia
and the corresponding stochastic differential equati
~SDE!. In section IV we present results for homogeneo
flows. In section V, we extend the model to inhomogene
flows. At this point a comparison is made between mo
results and experimental data in the supersonic mixing la
case.

II. MODELS FOR THE EFFECTS OF
COMPRESSIBILITY ON TURBULENCE

In compressible reacting flows, density variations ar
because of variations in chemical composition, and of te
perature and pressure fluctuations. While all these eff
contribute to create nonzero dilatation rates, only the la
are termed compressibility effects. In the following discu
sion, we consider an inert flow and therefore ignore the
fects of a chemical reaction on the density.

Consider the equation for turbulent kinetic energy
compressible flow:

^r&
]k

]t
1^r&Uĩ

]k

]xi
5T1P1Pd2^r&«2^ui9&S ]^p&

]xi

2
]^t i j &
]xj

D , ~1!

where

T52
]

]xi
S 1

2
^r&uj9uj9ui9̃1^p8ui9&2^uj9t i j8 & D

is the transport term,

P52^r&ui9uj9̃
]Ũ i

]xj

is the production term,

Pd5K p8
]ui8

]xi
L

is the trace of the pressure-rate of strain correlation, a
calledpressure dilatation, and« is the viscous dissipation. In
~1!, the brackets correspond to Reynolds averages and
primes to fluctuations about these averages, while the ti
and double primes stand for Favre averages and fluctuat
respectively. It has been shown11,14 that the viscous dissipa
tion can be split into two terms:

«5«s1«d ,
Phys. Fluids, Vol. 9, No. 9, September 1997
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where «s5n^v i8v i8& is the standard solenoidal dissipatio
and «d54/3n^ui ,i8 2& is the so-calleddilatation dissipation,
which is clearly zero in incompressible flows, and stric
positive in compressible flows, thus amounting to extra d
sipation. We see that in~1! three explicit terms arising from
compressibility need to be modelled:«d , Pd, and the last
term, which arises because the Reynolds averages^ui9& of
Favre fluctuations are nonzero. The last term is proba
very small in flows without large pressure gradients a
away from walls. We therefore choose to neglect it. W
need, however, to model the other two.

For the dilatation dissipation, we use the model of Sar
et al.11 relating«d to «s in the following way:

«d5CdMt
2«s , ~2!

whereMt
252k/ ã2 is the turbulent Mach number squared,ã

being the mean speed of sound. This model was develo
for Mt!1. The constantCd is of order 1. Equation~2! relates
the dilatation dissipation to the solenoidal dissipation. It h
been argued11,14 that the energy cascade responsible for
latter is moderately affected by compressibility, therefo
standard incompressible models for the solenoidal diss
tion can be used in the present situation.

For the pressure dilatation, we use Zeman’s mode15

which can be summarized in the following two equations

Pd52
1

2g^p&

D^p82&
Dt

, ~3!

D^p82&
Dt

52
^p82&2pe

2

ta
. ~4!

The first equation is valid in homogeneous turbulence
Mt!1, and for high Reynolds and Pe´clet numbers. The sec
ond equation is fully modelled, relying on the results
Sarkaret al.,11,28and stating that pressure variance relaxes
an equilibrium levelpe on the acoustic time scaleta . These
two model quantities are defined in Zeman.15 The pressure–
dilatation is expected to be important in nonequilibriu
flows, namely in flows with a strong dependence on init
conditions, for instance decaying isotropic turbulence. It
expected to be of lesser importance in equilibrium flows,
instance most free shear flows without shocks. To date, m
models forPd

12,15,16are restricted to weakly inhomogeneo
turbulence.

The models for both«d and Pd are restricted to flows
with Mt!1. In our calculations, for example, in mixing lay
ers with free stream Mach numbers as high as 6.5, we n
encountered values ofMt above 0.5, which has been consi
ered to fall within the range of applicability of these mode

The above discussion is centered exclusively on mod
ling from the point of view of the turbulent kinetic energ
equation, and not from the Reynolds stresses equation.
models we have chosen will affect the turbulence in an i
tropic manner. Though it is known at this point19,10that com-
pressibility also, and probably chiefly, affects the turbulen
by modifying the deviatoric pressure-rate of strain corre
tion so that the redistribution of energy does not function
well when the compressibility level is high, resulting in in
creased anisotropies in the normal stresses and decrease
2705B. J. Delarue and S. B. Pope
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isotropy in the shear stresses,19 we have chosen not to
modify our incompressible models for the pressure-rate
strain correlation. As of yet, no general model is available
this term, and it is still the object of ongoing research. F
thermore, the above models — in particular the dilatat
dissipation model — have been shown to reproduce w
known compressibility effects on turbulence such as the
crease in the spreading rate of a mixing layer when co
pressibility increases.29 It must be said, however, that rece
results show that the decrease in the growth rate co
mainly from the pressure-rate of strain correlation.30 It is
therefore necessary to keep in mind that the models we
using may not be valid for a wide variety of flows, and m
not be representing the dominant physical effects of co
pressibility on turbulence. Let us emphasize at this po
however, that the emphasis of this work is not on modelli
but on extending the domain of applicability of PDF metho
to compressible flows. As better models are developed
the effects of compressibility on turbulence, it will b
straightforward to incorporate them in our PDF formulatio

To complete this section, we need to discuss the eq
tions for the two thermodynamic variables necessary to
scribe the state of the fluid. The continuity equation play
different role in PDF/Monte Carlo methods than in secon
order closure methods. Its satisfaction is a requirement if
particle ensemble — introduced in the next section — is
be a consistent representation of the fluid,20 and not a means
for obtaining the fluid density if the velocity field is known
Therefore we do need two thermodynamic variables, b
different from the density, to describe the flow. For reaso
that will be given in the next section, we choose the press
p, and the specific internal energy,e.

The evolution equations for the means,^p& and ẽ, can
be derived from the first law of thermodynamics and t
equation of state for an ideal gas. They are

]^p&
]t

1^Ui&
]^p&
]xi

5^r&~g21!«2g^p&^D&2~g21!Pd

2
]^p8ui8&

]xi
, ~5!

^r&
] ẽ

]t
1^r&Uĩ

] ẽ

]xi
5^r&«2^p&^D&2Pd2

]^r&ui9e9̃

]xi
.

~6!

The fluid is an ideal gas,g being the ratio of specific heats
andD5Ui ,i is the dilatation rate. In the above equations,
neglected terms corresponding to molecular heat flux
mean viscous stress, both of which will be negligible in t
flows of interest in this paper. The turbulent pressure flu
in ~5! and energy fluxes in~6! are unclosed. In addition, w
need to determine the Reynolds average of the dilatation
D. In second-order closure methods, the mean velocity eq
tions only involve Favre averages of the velocity, and it
necessary to model the turbulent mass fluxes^r8ui8& to
switch between Favre and Reynolds averaging. Using
PDF formulation detailed in the next section,no modelling
effort is requiredin this respect. The turbulent mass, energ
2706 Phys. Fluids, Vol. 9, No. 9, September 1997
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and pressure fluxes are all in closed form and hence
equations for the thermodynamic variables require no ad
tional models.

III. THE PDF FORMULATION

A. The Eulerian mass–density function

In a turbulent compressible flow, we may look at th
flow propertiesU, v ~turbulent frequency!, e, andp at any
fixed locationx and timet as random variables. If we denot
the sample space variables associated with these ran
flow variables with a hat (̂), we define the one-point Eule
rian mass–density functionF as

F ~Û,v̂,ê,p̂;x,t !5r~ ê,p̂!^d~U~x,t !2Û !d~v~x,t !

2v̂ !d~e~x,t !2ê!d~p~x,t !2 p̂!&.

~7!

In this definitiond is the Dirac delta function.
Statistics of the flow are computed with the moments

F . Three important properties ofF are

E F dÛdv̂dp̂dê5^r~x,t !&, ~8!

E F Q* ~Û,v̂,p̂,ê!dÛdv̂dp̂dê5^r~x,t !Q~x,t !&

5^r&Q̃, ~9!

E F ^QuÛ,v̂,ê,p̂&dÛdv̂dp̂dê5^r&Q̃. ~10!

In the above systemQ* is any function of the flow variables
U, v, e, p, andQ5Q(x,t) is defined as

Q~x,t !5Q* ~U~x,t !,v~x,t !,e~x,t !,p~x,t !!.

If in eq. ~9! we replaceQ* by Q* /r, we see that the inte
gration over the sample space yields the Reynolds aver
instead of the Favre average:

E F
1

r~ ê,p̂!
Q* ~Û,v̂,p̂,ê!dÛdv̂dp̂dê5 K 1

r
rQL 5^Q&.

Therefore, knowingF we can switch freely between Favr
and Reynolds averages. Hence, as alluded to in the prev
section, no modelling of the mass fluxes is necessary.

B. Particle representation

In a Monte Carlo simulation of a flow with constant tot
massM , F is represented by an ensemble ofN stochastic
particles, each of massDm5M /N, which model fluid par-
ticles. The assumption of constant total mass does not a
the generality of the following analysis. In an actual nume
cal implementation, both the particle numberN and the par-
ticle massDm are allowed to vary, but taking this into ac
count at this point would make the analysis unnecessa
complicated.

In our representation, each stochastic particlei has a
position x( i ), a velocity U ( i ), a turbulent frequencyv ( i ), a
pressurep( i ), and a specific internal energye( i ). All these
B. J. Delarue and S. B. Pope
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properties depend only on timet, and evolve according to
modelled evolution equations. The discrete Lagrang
mass–density function is defined as

F N~Û,v̂,ê,p̂,x;t !5Dm(
i 51

N

d~U ~ i !2Û !d~v~ i !2v̂ !

3d~e~ i !2ê!d~p~ i !2 p̂!d~x~ i !2x!.

~11!

The moments ofF N give the statistics of particle prop
erties. We require these to model statistics of the flow.

Each stochastic particle is supposed, at the loca
which it is occupying, to represent a single realization of
flow. Therefore all particles are statistically equivalent, a
we can define the particle mass–densityq as

q5Dm(
i 51

N

^d~x~ i !2x!&5M ^d~x* 2x!&, ~12!

wherex* is the position of any stochastic particle in 1,...,N.
This quantity is analogous to the fluid densityr.

For the particle system to be a valid representation of
flow, we require the correspondence

f̃ 5^F N&/q, ~13!

where f̃ 5F /^r& is the Eulerian density-weighted joint PD
of fluid properties. This expression implies that the mean
a particle property conditional upon the particle location, o
tained by computing the moments of^F N&/q, is equal to the
Favre average of the corresponding fluid property at that
cation. Or, ifa(x,t) is a fluid property, anda* (t) the cor-
responding stochastic particle property, then we have

^a* ux&5a~ x̃,t !, ~14!

where the left-hand side is an abbreviation for the con
tional expectation̂a* (t)ux* (t)5x&.

C. Evolution equations for the particle properties

In this section we give the evolution equations for
particle propertiesx* , e* , p* , U* , andv* . These are writ-
ten as stochastic differential equations~SDE! in which
da* 5da* (t) denotes the infinitesimal incremen
a* (t1dt)2a* (t) for any stochastic particle propertya* .

The particles model fluid particles, and hence move w
their own velocity:

dx* 5U* dt. ~15!

The internal energy evolves according to the first law
thermodynamics:

de* 5«dt2p* dv* . ~16!

In the above equation,v* refers to the specific volume of th
stochastic particle, related toe* andp* through the equation
of state, which for an ideal gas with constant specific he
reads as

p* v* 5~g21!e* . ~17!
Phys. Fluids, Vol. 9, No. 9, September 1997
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Thereforedv* is known if dp* andde* are known. Equa-
tion ~16!, as was stated above, is derived from the first law
thermodynamics: the first term on the right-hand side is
heat added through dissipative work, and the second ter
the pressure work.

The dissipation« is equal tokV(11CdMt
2), whereV is

a quantity derived from the turbulent frequencyv* . More
detail on V is to be found in Jayesh and Pope,31 and the
evolution equation forv* is given at the end of this section
No model is incorporated in eq.~16! to account for molecu-
lar transport. We are restricting our analysis to flows w
high Reynolds and Pe´clet numbers.

The pressure equation is fully modelled. We write it in
general form:

dp* 5p* ~Adt1BdW!. ~18!

We see that this SDE involves a Wiener processW(t),
which has the following properties:

^dW&50,

^dW2&5dt.

For a more exhaustive review of the properties of the Wie
process, see Pope.20 The two model coefficientsA andB are
given by

A5
«

e*
1

B2

2 S 11
1

g D2g
]^Ui&
]xi

1~g21!VA~p* 2^p&!,

~19!

B25
pe

2

ta

1

u

1

~^r& ã !2

1

ẽ
. ~20!

In the above equations,VA , pe , and ta are given by
Zeman15 andu512g21.

The coefficientsA andB in ~19! and~20! are determined
so that the following two conditions are satisfied: (i ) the
specific volumev* satisfies, in the mean, the mean contin
ity equation, and (i i ) the pressure dilatation correlation ha
the same form as in Zeman’s model,15 obtained by combin-
ing eqs.~3! and ~4!:

Pd5
^p82&2pe

2

2ta^r& ã2
. ~21!

This amounts to having the pressure variance evolve acc
ing to eq.~4!, to first order inMt

2 and in homogeneous flows
However, in arbitrary flows, as we will see, the PDF press
variance equation is quite different, but the expression
Pd is still eq. ~21!.

The form of Zeman’s model for the pressure–dilatati
is quite complicated. If a simpler, algebraic model such
Sarkar’s12 were to be used, the expressions forA and B
would also become simpler. In the most general case, iff d is
the function of known flow statistics which gives th
pressure–dilatation, then we can rewriteA as

A5
«

e*
2g

]^Ui&
]xi

2g
f d

^r&^p82&
~p* 2^p&!,
2707B. J. Delarue and S. B. Pope
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andB can be taken to be zero. These modifications are v
for any function f d , including eq.~21!. In the special case
where the expression for this function contains terms wh
are always negative — such as the term inpe in Zeman’s
model — these terms will be preferably incorporated inB,
resulting in a nonzero value for this model coefficient. Th
is the approach taken in this paper. If, however, none of
terms inf d is consistently negative, as is the case in Sarka
model,B has to be zero, andA has to be given by the abov
expression.

A unique feature of this formulation is that averaging
the pressure workp* dv* over the stochastic particles yield
the pressure dilatation correlationin closed form. The PDF
formulation preserves the physical meaning ofPd as the
mean of the fluctuating pressure workp8 dv8. Hence, once
the evolution equations forp* ande* are specified, no ad
ditional modelling is required to obtain the pressure dila
tion.

There is a variety of ways to select the two thermod
namic variables needed to describe the state of the fluid.32,33

The choice ofe and p is advantageous for the followin
reasons. There is a straightforward correspondence betw
the specific internal energy and the temperature in reac
flows, and the evolution equation fore* can be derived from
simple physical principles. The choice ofp allows us to con-
trol the pressure variancêp82& so that it evolves according
to ~4! in homogeneous turbulence and for lowMt , and there-
fore to represent the energy associated with pressure fluc
tions in compressible flow in the same way as Zema
model represents it.

The velocity evolves according to the simplified Lang
vin model,34 modified to account for the presence ofPd in
the turbulent kinetic energy equation:

dUi* 52
1

^r&

]^p&
]xi

dt1
1

2kS Pd

^r&
2«S 11

3

2
C0D D ~Ui*

2Ũ i !dt1~C0«!1/2dWi . ~22!

Accounts of the performance of this model can be found
Pope.35 The value of the model constantC0 is 2.1.

Finally, the turbulent frequency evolves according to t
model equation of Jayesh and Pope:31

dv* 52~v* 2ṽ !C3Vdt2ṽv* Svdt

1~2s2ṽv* C3V!1/2dW. ~23!

Details on the model and a brief review of its performan
can be found in Jayesh and Pope.31

The stochastic differential equations detailed abo
@~15!, ~16!, ~18!, ~22!, and~23!# yield an evolution equation
for F N /q with no unclosed terms, which constitutes a mod
for the evolution equation of the one-point density-weigh
joint PDF f̃ . The equations for the moments ofF N /q con-
stitute model equations for the corresponding moments of̃ .
For instance, the evolution equation for^e* ux& is strictly
identical to ~6!, and the evolution equation fo
^p&5^p* v* ux&/^v* ux& is identical to~5!, with Pd modelled
2708 Phys. Fluids, Vol. 9, No. 9, September 1997
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according to Zeman’s model in both cases, and the turbu
pressure and energy fluxes in closed form. The mode
turbulent kinetic energy equation reads as

^r&
]k

]t
1^r&Ũ i

]k

]xi
52

]

]xi
S 1

2
^r&uj9uj9ui9̃ D

2^r&ui9uj9̃
]Ũ j

]xi
1Pd2^r&«.

(24)

As we can see, the only terms that are not accounted fo
this equation, let alone the terms we decided to neglect in
first section, are the pressure and viscous transport te
Finally, the modelled pressure variance equation reads a

]S 1

2
^p82& D
]t

1^Ui&

]S 1

2
^p82& D
]xi

52g^p82&^D&2^p8ui8&
]^p&
]xi

2
1

2

]

]xi
^p82ui8&

2g^p&Pd1^r&~g21!«p8̃, ~25!

which we can compare with the true pressure variance e
lution equation:1

]S 1

2
^p82& D
]t

1^Ui&

]S 1

2
^p82& D
]xi

52g^p82&^D&2^p8ui8&
]^p&
]xi

2
1

2

]

]xi
^p82ui8&

2g^p&Pd2
2g21

2
^p82D8&. ~26!

As alluded to earlier, our model equation~25! is more com-
plete than eq.~4! in inhomogeneous flows. It is very close t
eq. ~26! ~in which we omitted terms coming from molecula
transport!. The only difference lies in the last term of eac
equation, which we will prove to be negligible in~25!, and
which scales likeMt

2^p&Pd in ~26!, and is therefore negli-
gible compared to thêp&Pd term. For the sake of clarity
we omitted in~25! terms of orderMt

2 or higher which we
already know to be negligible.

IV. IMPLEMENTATION IN HOMOGENEOUS
TURBULENCE

A. Decaying isotropic turbulence

The purpose of this section is to compare the perf
mances of our formulation to those of a classical Reyno
stress closure using Zeman’s and Sarkar’s models. The
difference between PDF and second-order closure, in ho
geneous isotropic turbulence, is that the pressure–dilata
Pd is related tô p82& by eq.~3! in the latter case, whereas
is obtained through direct averaging ofp* dv* in the former
case. Since, as was said before, the model has been des
so as to have the same expression forPd @eq. ~21!# in both
cases, we need to check that^p82& also has the same value
or that the last term in eq.~25! is small compared toPd — in
B. J. Delarue and S. B. Pope
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which case the evolution equations~4! and ~25! will be vir-
tually identical. Our results~Figs. 1 and 2! show that the
agreement between the values of the pressure variance
other statistics of the flow~here Mt) in both methods is
excellent. Our method therefore provides an excellent P
equivalent of a Reynolds-stress closure incorporating Z
an’s and Sarkar’s models.

Figure 3 shows that the Favre and Reynolds avera
can both be obtained with our method. Even in this c
there is a significant difference between both quantities~dis-
played here for the specific internal energy, which is prop
tional to the temperature!.

Decaying turbulence exhibits a strong dependence
initial conditions. For our problem, initial conditions depen
upon two parameters only, because the initial level of den
fluctuations is set to zero: the initial turbulent Mach numb
Mt0 , and the initial level of pressure fluctuationsP0 . Figure
1 corresponds to lowP0 and highMt0 , figure 2 to the op-
posite situation. In both situations we observe a rapid
change between pressure fluctuations and kinetic energ
the acoustic time scaleta , due toPd , followed by viscous
decay of the turbulence.

B. Homogeneous shear flow

In this section, the mean shearS5Ũ1,2 has a constan
value set to (Sk/«s)057.2. We compare our results to DN

FIG. 1. Turbulent Mach number and normalized pressure variance ve
time for the initial level of pressure fluctuationsP050.05 and various val-
ues of the initial turbulent Mach numberMto .
Phys. Fluids, Vol. 9, No. 9, September 1997
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data by Sarkaret al.13 Though this reference contains sev
different run conditions, there is only one set of initial co
ditions consistent with our modelling assumptions.

Figure 4 shows a reasonable agreement with the d
These results are to be considered with much care, cons
ing the limitations mentioned in section II. In particular, th
reduction in the shear stress anisotropy which leads to a

usFIG. 2. Turbulent Mach number and normalized pressure variance ve
time for the initial turbulent Mach numberMto50.05 and various values o
the initial level of pressure fluctuationsP0 .

FIG. 3. Reynolds versus Favre averaged temperatures, in the caseMto50.5,
P050.05.
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duced production19 is not accounted for. The good agreeme
of fig. 4 is therefore attributable in part to an excessive d
sipation. However, since we aim to reproduce basic effe
of compressibility such as the decreased growth rate o
compressible mixing layer, it is important that our mod
yields the correct evolution for the turbulent kinetic energ

We also implemented a model by Ristorcelli17 for the
compressible dissipation«d , which yields a better agree
ment. We nevertheless decided to retain the Sarkaret al.
model11 in the following sections.

V. INHOMOGENEOUS FLOWS: THE COMPRESSIBLE
PLANE MIXING LAYER

A. The mean pressure problem

A basic problem in PDF/Monte Carlo methods over t
past decade has been the determination of the mean pre
field. One issue is the reduction of statistical noise, inher
to Monte Carlo simulations. Another one is the enforceme
at the stochastic particle level, of mass conservation. B
problems have been addressed36 through the use of a pres
sure algorithm based on the steady-state mean contin
equation to determine the mean pressure field.

In our case, the particle average ofp* , which evolves
according to eq.~5!, yields a pressure field which is ex
tremely close to the true pressure field^p&, and addresses th
issue of mass conservation at the particle level — the an
sis is rather lengthy and outside the scope of this pa
However, this particle averaged field contains considera
statistical noise, and we have to modify our approach in
homogeneous flows to eliminate this problem. The followi
analysis is valid in steady flows only.

In the modified formulation, each particle is no long
assigned a full pressurep* , but afluctuating pressure p8*
such that

^p8&50.

The total pressure is recovered using

p* 5^p&1p8* ,

FIG. 4. Turbulent kinetic energy versus normalized time.Mto50.3,
P050.005. Solid line, PDF results based on Sarkar’s model for«d . Dashed
line, PDF results based on Ristorcelli’s model for«d .
2710 Phys. Fluids, Vol. 9, No. 9, September 1997
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where^p& is the mean pressure field, defined at grid poi
throughout the domain, and obtained using a separate a
rithm. Hence our PDF formulation is implemented in th
framework of a so-called particle-mesh method. At this po
it is important to note that the method described below
obtain the pressure is not a full Navier–Stokes solver. I
based on the solution of an elliptic equation for the press
on a given grid, using information supplied by the set
stochastic particles. Other statistics, for example, the m
velocity, are not solved for in the same way, but are avera
over the individual stochastic particle properties.

The evolution equation forp8* is derived from eq.~18!:

dp8* 5dp* 2U* •¹^p&dt, ~27!

wheredp* is given by eq.~18!. The average of the pressur
fluctuations evolving according to~27! is zero in steady
flows. The evolution equation for^p82& is not modified. The
sole difference between this approach and the approach
tailed in the previous sections is that the mean pressure^p&
is obtained by a pressure algorithm which makes it poss
to filter out the statistical error. The resulting pressure fi
does, however, obey the steady-state version of eq.~5!.

To obtain the mean pressure, we base our approac
the steady-state mean continuity equation:

¹•^rU&50. ~28!

The idea of the algorithm is to correct the mean pressure^p&
at each time stepdt and at each grid point by an amou
d^p& so that~28! is satisfied at all times. The pressure co
rection brings about a density correctiondr ~which we
specify to take place at a constant specific energy!, and a
velocity correctiondU. These corrections are given by th
following formulae:

dr5
1

~g21! ẽ
d^p&, ~29!

dU52
1

^r&
¹~d^p&!dt. ~30!

Substituting forr1dr and U1dU in ~28!, we obtain the
equation ford^p&:

¹•S g
U

ã2
d^p& D 2¹2~d^p&!dt52¹•^rU&. ~31!

This equation is solved at each time step ford^p&. The par-
ticular form of the 9-point Laplacian operator in this particl
mesh discretization makes it necessary to filter the solu
to remove an instability whose wavelength is twice the g
size. This is done by using a simple centered filter, where
value of the solution at a grid point is replaced by t
weighted average of the values at the point and its no
south, east, and west neighbors. The solution is fina
smoothed to reduce statistical error, by using a stand
fourth-order artificial viscosity method. The mean press
^p& is then updated. In the process, mass conservatio
enforced at the particle level. The particular way in whi
B. J. Delarue and S. B. Pope
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the density is corrected~at constant temperature! is arbitrary
but does not have any influence on the steady-state pres
or density fields.

The first term in the left-hand side of eq.~31! accounts
for all compressibility effects on the mean pressure fie
including shocks and steady acoustic waves. The sec
term is analogous to the Laplacian operator in the Pois
equation for pressure in incompressible flows. It can
shown that the first term is of orderM2 compared to the
second, whereM is a characteristic Mach number. Therefo
in the limit of smallM , we recover the Poisson equation f
pressure. In this approach, the pressure is considered a
agent through which mass conservation is enforced.

With this new approach, the pressure–dilatation corre
tion is still the average of the fluctuating pressure work, a
the pressure variance evolution equation is unmodified. F
thermore, the mean pressure field^p&, although smoother
still satisfies the steady-state version of eq.~5!. Therefore the
only limitation that we have introduced is the restriction
the method to steady compressible flows.

B. Growth rate calculations

The dimensional parameters needed to describe a mi
layer between two streams made of ideal gases are the
stream velocitiesUi , pressurespi , densitiesr i , specific
heat ratiosg i , and specific gas constantsRi , wherei 51,2
correspond to the high- and low-speed streams, respecti
The corresponding nondimensional parameters are

g2

g1
,
p2

p1
,
r2

r1
,
R2

R1
,g1 ,

U2

U1
,M1 .

For our growth rate calculations, we set the first four para
eters to 1, and takeg151.4. Under these conditions it i
convenient, in place ofM1 , to use theconvective Mach num
ber Mc defined as3,37

Mc5
U12U2

2a
, ~32!

wherea is the speed of sound, identical in both streams. T
spreading rate of the shear layer in the self-similar regio
a nondimensional constant, and therefore it is related to
only varying nondimensional parameters by

d85
dd

dx
5 f S U2

U1
,McD . ~33!

The mixing layer widthd is defined as the 0.1–0.9 thicknes
which is the distance between the points at which the m
velocity is U210.1DU and U210.9DU, respectively. To
measure the effects of compressibility ond8, we measure the
quantityd8/d08 whered08 is the incompressible growth rate
the same velocity ratio, obtained by settingMc to zero in
~33!. ReplacingM1 by Mc in the initial set of nondimen-
sional parameters has the effect thatd8/d08 is a very weak
function of the velocity ratio.3

It is emphasized at this point that the above dimensio
analysis contains no large-scale structures consideration
has been found6 that the convective Mach number, who
existence depends on such structures,3,37 is not always de-
Phys. Fluids, Vol. 9, No. 9, September 1997
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fined, and much less unique, in highly compressible flows
our case, however, the parameterMc defined by~32! can
always be substituted forM1 if the thermodynamic proper
ties are matched in both streams, to the effect that the gro
rate ratiod8/d08 is a weaker function ofU2 /U1 . Mc will
therefore correlate very well the effects of compressibility
the shear layer growth rate, independently of the veloc
ratio.

Figure 5 shows the present calculated growth rates c
pared to experimental data and computer simulations.
velocity ratios varied, for these calculations, between 0.2
0.5. Our results are close to those of Sarkar a
Lakshmanan,29 as can be expected since the compressib
effects — namely, the compressible dissipation — are m
elled in the same way. In an attempt to bring the calcula
growth rates closer to the general scatter than Sarkar
Lakshmanan did, the value ofCd that we chose was 2, an
theirs was 1, which accounts for the slight discrepancy
tween the two curves. Overall, our results still lie in th
upper region of the scatter.

Figures 6 and 7 show the effect of convective Ma
number on the self-similar turbulence profiles, here^u82&
and^u8v8&. The velocity ratio was set to 0.5 for all the run

FIG. 5. Growth rate reduction with increasingMc . The big symbols are for
the present calculations, for both the momentum and the 0.1–0.9 th
nesses. The figure was partly reproduced from Ref. 33.

FIG. 6. The effect ofMc on self-similar streamwise turbulence intensity
2711B. J. Delarue and S. B. Pope
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therefore onlyMc varies. Compressibility reduces the inte
sity of the turbulence in a symmetric way, over the who
width of the layer. Shown for comparison are the inco
pressible profiles (Mc50) for the same velocity ratio. We
can see that the growth rate reduction is attributable, with
model, to an overall decrease in the turbulence inten
across the layer.

C. Comparison with experimental data

In this section we compare our results with experimen
data by Samimyet al.4,5,7 and Dutton et al.8,9 Although
growth rate measurements are abundant in the literature,
not so for mean and turbulent velocity profiles. The abo
references were the only ones known to the authors at
time of writing.

In both sets of experiments, the convective Mach nu
ber was varied simultaneously with the pressure ratio, d
sity ratio, and velocity ratio. Though Duttonet al. studied
seven cases in all, and Samimyet al. three, we chose two
cases out of each set with similar convective Mach numb
0.46 and 0.86 in the Duttonet al. experiments~cases 2 and
48,9! and 0.51 and 0.86 in the Samimyet al. experiments
~cases 1 and 34,7!. For each case we ran the PDF code w
the corresponding set of nondimensional parameters. Ou
sults will therefore allow us not only to assess the perf
mance of the PDF model, but also to compare both set
experimental results. The nondimensional parameters co
sponding to each case are summarized in table I.

Figure 8 shows the mean streamwise velocity profiles

FIG. 7. The effect ofMc on self-similar Reynolds shear stress.

TABLE I. Nondimensional parameters for Samimyet al. and Duttonet al.
experiments.

Case Samimy 1 Dutton 2 Samimy 3 Dutton 4

U2 /U1 0.36 0.57 0.25 0.16
p2 /p1 1.03 1 1 1
r2 /r1 0.64 1.55 0.37 0.60
R2 /R1 1 1 1 1
g2 /g1 1 1 1 1

g1 1.4 1.4 1.4 1.4
M1 ,M2 1.80, 0.51 1.91, 1.36 3.01, 0.45 2.35, 0.30

Mc 0.51 0.46 0.86 0.86
2712 Phys. Fluids, Vol. 9, No. 9, September 1997
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the self-similar region, for a subset of cases: case 1
Samimyet al., cases 2 and 4 for Duttonet al., and the PDF
runs corresponding to the Samimy cases. The other case
not shown for the sake of not overloading the plot. As
evident on the figure, the profiles collapse very well on
single curve. It was observed, in both the PDF calculatio
and the experiments, that the mean streamwise velocity
files became self-similar earlier than the turbulent stress p
files.

Figures 9 and 10 show the streamwise turbulence in
sity for the PDF calculations and the experiments. It is fou
that the agreement is excellent with the Samimyet al. re-
sults, but not as good for the Duttonet al. results. In fact,
Dutton et al. found that the streamwise turbulent intens
showed very little variation withMc , which was not the case
for Samimy et al. Our results are closer to the findings
Samimyet al., though the model does not seem to reprodu
the preferential decrease in turbulence intensity in the hi
speed side.

Figures 11 and 12 show the Reynolds shear stress fo
PDF calculations and the experiments. Again, the agreem
is very good with the Samimyet al.data, and not as good fo
the Duttonet al. set, though better than in the previous plo

FIG. 8. Mean streamwise velocity profiles in the self-similar region.

FIG. 9. Streamwise turbulent intensity. A comparison between PDF ca
lations and Samimyet al. data.
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This is to be expected, since it has been shown38 that in
compressible mixing layers the normalized Reynolds sh
stress scales with the normalized growth rate. The clo
agreement, in this case, between our calculations and
Dutton et al. data is therefore a consequence of the agr
ment between our growth rate calculations and the gen
scatter, as shown in fig. 5.

Figure 13 shows the lateral convection of turbulent
netic energy. It is a third moment, and therefore easily c
culated if one knows the one-point density-weighted jo
PDF f̃ . The agreement between our calculations and exp
mental results is reasonable, but not as good as for the
ond moments: the PDF model seems to underpredict the
portance of this transport term. This might contribute to
observed smaller value of the turbulence intensity in
edges of the layer in the PDF calculations, as is eviden
figs. 9 and 10. We should, however, mention the importa
of statistical noise in both our calculations and the exp
ments, which becomes larger as one measures higher-o
moments. The sampling region over which the third mom
was calculated contained approximately 10000 partic
which is the maximum that could be reached while achiev

FIG. 11. Reynolds shear stress. A comparison between the PDF calcu
and Samimyet al. data.

FIG. 10. Streamwise turbulent intensity. A comparison between the P
calculations and Duttonet al. data.
Phys. Fluids, Vol. 9, No. 9, September 1997
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reasonable run times. Samimy and Elliott used 40
samples. A minimum number of samples for this mome
would be around four times as much.4 Therefore in both the
calculations and the experiments the minimum number
samples was not reached, and statistical error is still imp
tant.

Figure 14 shows the correlation coefficient between
streamwise and the lateral turbulent velocity fluctuatio
Both experiments show that the correlation coefficient
weakly affected by compressibility. We compared in th
case the results with different PDF calculations, done
Mc50 and Mc51.15. It is found that not only does th
correlation coefficient vary weakly withMc , it is also very
close to the incompressible value across the whole la
Future turbulence models for compressibility effects sho
therefore attempt to reproduce this result, which is comm
to both sets of experiments.

Overall, it is found that the agreement with experimen
data is very good for the Samimyet al. set, and reasonabl
for the Duttonet al. set. The limited amount of availabl
data, however, precludes us from drawing extensive con
sions.

ion

FIG. 12. Reynolds shear stress. A comparison between the PDF calcul
and Duttonet al. data.

FIG. 13. Lateral convection of turbulent kinetic energy in the self-simi
region.

F
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VI. CONCLUSIONS

We have presented a new model that extends the a
cability of methods based on the joint probability dens
function to compressible flows. The method is based o
modelled transport equation for the joint PDF of veloci
turbulent frequency, pressure~or fluctuating pressure!, and
specific internal energy. We have tested this model in b
homogeneous and inhomogeneous flows, in the Monte C
simulation framework, and have found good agreement
tween our results and available data in both cases. In
inhomogeneous case, we have designed and implemente
algorithm to obtain the mean pressure while filtering out
statistical noise and enforcing mass conservation at the
chastic particle level. This algorithm is applicable to flow
with arbitrary pressure gradients as well as to recirculat
flows. The compressibility aspects of the turbulence mod
ling are based, largely, on existing Reynolds str
closures.11,15 Consequently, the PDF model inherits seve
performance characteristics of these Reynolds stress mo
As improved Reynolds stress models are developed —
account for the effects of compressibility on the pressure-
of strain correlation, for example — it will be straightfo
ward to incorporate these improvements in the PDF mod

The present model is valid for inert flows. Our long-ter
goal, however, is to predict the properties of supersonic
acting flows, in the context of high-speed combustion. T
extension of our present approach to reacting flows is
pected to be straightforward, and will be the next step to
taken by the authors.
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