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A methodology termed the “filtered density functionFDF) is developed and implemented for
large eddy simulatiolLES) of chemically reacting turbulent flows. In this methodology, the effects

of the unresolved scalar fluctuations are taken into account by considering the probability density
function (PDF) of subgrid scal€SGS scalar quantities. A transport equation is derived for the FDF

in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing
and convection within the subgrid are modeled. The FDF transport equation is solved numerically
via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential
equationgSDES are obtained. These solutions preserve theSlikhman nature of the SDEs. The
consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance
of the closures employed in the FDF transport equation are assessed by comparisons with results
obtained by direct numerical simulatidBNS) and by conventional LES procedures in which the

first two SGS scalar moments are obtained by a finite difference methB8-FD. These
comparative assessments are conducted by implementations of all three s¢RBReBDNS and
LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both
non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF
yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in
reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are
significantly different from those based on DNS. The FDF results show a much closer agreement
with filtered DNS results. ©1998 American Institute of Physids$s$1070-663(98)01402-0

I. INTRODUCTION also important in LES. McMurtnet al,?®>2® Sykeset al.?’
Liou et al,?® Menonet al,?® Boris et al,*° Furebyet al, %2

Over the past 30 years since the early work ofCook et al,**3** Mathey and Chollet? Branley and Joné8
Smagorinsky, significant efforts have been devoted to largeand others provide several means of conducting LES of tur-
eddy simulation(LES) of turbulent flows’™*2 The most bulent reacting flows.
prominent model has been the Smagorinsky eddy viscosity Modeling of scalar fluctuations in Reynolds averaged
closure which relates the unknown subgrid s¢8€S Rey-  methods has been the subject of broad investigations since
nolds stresses to the local large scale rate of flow stfain. the pioneering work of Toof, An approach which has
This viscosity is aimed to provide the role of mimicking the proven particularly useful is based on the probability density
dissipative behavior of the unresolved small scales. The eXunction(PDP or the joint PDF of scalar quantiti€&-*' The
tensions to “dynamic” modef$'> have shown some im- systematic approach for determining the PDF is by means of
provements. This is particularly the case in transitional flowsolving the transport equation governing its evolufiérin
simulations where the dynamic evaluations of the empiricathis equation, the effects of chemical reaction appear in a
model “constant” result inlsomewhat better predictions of closed form; this constitutes the primary advantage of the
the large scale flow features. PDF schemes in comparison to other statistical procedures.

A survey of combustion literature reveals relatively little The use of PDF for LES was suggested by Gand its first
work in LES of chemically reacting turbulent flows® It  application is due to Madnia and Gi#fA.In this work, the
appears that Schumariwas one of the first to conduct LES Pearsonfamily of distributions are assumed to characterize
of a reacting flow. However, the assumption made in thisPDF of SGS scalars in homogeneous flows under chemical
work simply to neglect the contribution of the SGS scalarequilibrium conditions. This procedure was also used by
fluctuations to the filtered reaction rate needs to be justifie€ook and Riley** The extension of assumed PDF methods
for general applications. The importance of such fluctuationgor LES of non-equilibrium reacting shear flows is reported
is well recognized in Reynolds averaged procedures in bothy Frankelet al*® While the generated results are encourag-
combustion®2° and chemical engineerifty?* problems. ing, they do reveal the need for more systematic schemes in
Therefore, it is natural to believe that these fluctuations arevhich the transport of the PDF of SGS scalar quantities are
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considered. Pop@introduced the concept of “filtered den- U

sity function” (FDF) which is essentially the PDF of SGS o 0 (6)

scalar variables. With a formal mathematical definition of the '

FDF, Popé® demonstrates that the effects of chemical reac- AudL AU (un) Apy. ) aTy

tion appear in a closed form in the FDF transport, thus mak- atJ L 'a;‘ L ax- S 07)'(’. L a—X"J, 7)

ing it a viable candid?a%e for LES of chemically reacting ! ! : !

flows. Gao and O’'Brielt develop a transport equation for o o

the FDF and offer suggestions for modeling of the unclosed HPa)r n IHUi) L (PaL __ (I _ IM; w,)

terms in this equation. at Xi IX; IXi ot
The objective of the present work is to further demon- ®

strate the applicability of the FDF and to provide results _ a_

based on its implementation for LES of chemically reacting\,_\/he.re T _égri]g{[gt_héusihéug% streasr;dan dl\ilr;e_sfuti)(ﬁrq?;mass
turbulent flows. Only the FDF of scalar quantities is consid-ﬂug(u'zéﬁggively ubgri ubgn

ered; probability treatment of the subgrid velocity fluctua-" "’ '
tions is postponed for future work.

Il. FORMULATION lll. CLOSURE STRATEGY

We consider an incompressiblanit density, isother- In LES of non-reacting flows the closure problem is as-
mal, turbulent reacting flow involving\s species. For the sociated witf Ti;=(u;u;) —(u;) (u;). and M{¥=(u;p ).
mathematical description of this flow, the primary transport—(u;), (¢,), . In reacting flows, an additional model is re-
variables are the velocity vectay(x,t) (i=1,2,3), the pres- quired for{w,), . Here, modeling of w,), is the subject of
sure p(x,t), and the species’ mass fractions,(x,t) («  the probability formulation as described in the next section.
=1,2,...Ng). The equations which govern the transport of For the former two, we make use of currently available clo-
these variables in space;] and time ) are sures which are well-established in non-reacting flows. The
subgrid stress is modeled via

(9Ui
o 0, )
Xi Tij— (8;/3) Tie= —2v(Sij)1 9
%+ MY _ ‘?_p+ &ﬂ (2)  where(S;), is the resolved strain rate tensor andis the
S IXj X subgrid viscosity. We use two closures to represent this vis-
ib, b, PAL X cos_ity.kTheI firstéis the same as that in the conventional Sma-
=—— orinsky closur
o oy, @ ® 9 y
A 2
where w (x,t)= 0, (®(x,t)) denotes the chemical reaction = CsAG V(S L(Sij)L, (10
term for speciesy, and ®=[¢,,¢,, . .. ,d;NS] denotes the

whereAg is the filter size andC, is an empirical constant.
The drawbacks of this closure are well-recogniZed.In an
attempt to overcome some of these drawbacks, we also make
use of a second closure in which the subgrid viscosity is

(aui auj) 7 I, determined based on the modified subgrid kinetic energy
Tii=V| oo ) =

X * aX; ax; '’ @

scalar array. Assuming a Newtonian flow with Fick’s law of
diffusion, the viscous stress tensgy and mass flux{* are
represented by

= Crld g VIUF ) (UF ) — (U o0 ], (@D

whereu’ =u;— 74 and 7 is a reference velocity in the;
direction. The subscrift’ denotes the filter at the secondary
level which has a characteristic siggenoted byA /) larger
+oo than that of grid level filter. This model is essentially a modi-
(fx D)= f_m f(x",t) 2(x",x)dx’, (5 fied version of that proposed by Bardieaal,>* which uti-
lize equal sizes for the grid and secondary filters. We refer to
where s denotes the filter functior{f(x,t)), represents the this as the modified kinetic energy viscosityIKEV) clo-
filtered value of the transport variabligx,t), and f'=f sure.
—<f>|_ denotes the fluctuations déffrom the filtered value. A similar model is used for the closure of the subgrid
We consider spatially and temporally invariant and localizedmass fluxe¥
filter functions, thus (X', X)=G(x'—x) with the
propertiest’ G(x)=G(—x), and [*,G(x)dx=1. More- Y
over, we only consider “positive” filter functions as defined Mi'=—I4
by Vermanet al*8for which all the momentg” _ x"G(x)dx
exist form=0. The application of the filtering operation to wherel';=v,/Sg, and Sg¢is the subgrid Schmidt number
the transport equations yields and is assumed constant.

where v is the fluid viscosity and” is the diffusion coeffi-
cient,I'=»/Sc, and Sc is the molecular Schmidt number.

Large eddy simulation involves the use of the spatial
filtering operatiofi’

(9<¢a>L

A%

: (12
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IV. FILTERED DENSITY FUNCTION (FDF) where the summation convention applies to the species suf-

o . ) fix, @. This combined with Eq(15) yields
The key point in this formulation is to consider the scalar

fluctuations of the underlying scalars’ arrap(x,t) in a IPL(WXY) 4 | [dd, W) P (Wixt) (21)
probabilistic manner. For that, we define the “filtered den- ot T ay, at L L=
sity function” (FDF), denoted byP, , as® o _ .
Substituting Eq(3) into Eq. (21) yields
+
PUWx= | ol R 0IG0 X, 1D ot o ([ | (],
- a o, x; O Vx|,
NS
T, P(x,t)]=6[W—D(x,t)]= S a— P (X 1)], N
ol W, @(x0)]= W —d(x,)]= T olv.—da(x1)] _<wa(¢)|\p>L}PL(q,;x,t)J 22
(14)

where § denotes the delta function an# denotes the com- in Which the convective term can be represented in the form

position domain of the scalar array. The tegitb—¥(x,t)] 9 b,
is the “fine-grained” density’>*° and Eq.(13) implies that < . \If> PL(W;x,t)
the FDF is thespatially filteredvalue of the fine-grained “ ! L

density. ThusP, gives the density in the composition space (Ui W) PL(W;x,t)

of the fluid aroundx weighted by the filterG. With the = (23

condition of a positive filter kernéf P, has all the proper- %

ties of the PDF? The unclosed nature of convection is denoted by the condi-
For further developments, it is useful to define the “con-tional filtered value of the velocity which is further decom-

ditional filtered value” of the variabl&(x,t) by posed into resolved and subgrid scale components. It is use-

o ful to adopt the decomposition
JI2Q(X'\t)e[W,d(Xx",1)]G(X" —x)dx’
(Q(x,0)| W) = P (WX 1) , (Ui ) P = (U P+ (Ui W) —(up) L IPL, (29

(15  so that Eq(21) can be expressed as

where(a|B), denotes the filtered value of conditioned on aPL au) P (Ui | Wy —(u;) 1P
B. Equation(15) implies ot T > X
(i) For Q(x,t)=c, (Q(x,t)[¥)_=c, (16) o [/a32

X X + <—' \II> PL}
(i) For Qu,)=Q(®(x,1), (QUx,H|¥) =Q(¥), (17) Wa | NOXil ]
(i) Integral property:(Q(x,t)), (V)P ]

- T (25
= J_w (Q(x, 1)) PL(W;x,1)dW, (18  This is an exact transport equation for the FDF and is similar

to that presented by Gao and O'BriétiThe last term on the
wherec is a constant, anég(@(x,t))EQ(x,t) denotes the right hand side of this equation is due to chemical reaction
case where the variabl® can be completely described by and is in a closed form. The second term on the left hand
the compositional variabl@(x,t). From these properties it Side represents the filtered convection of the FDF in physical
follows that the filtered value of any function of the scalar Space and is also closggrovided(u;), is known. The un-
variables(such as the reaction ratis obtained by integration closed terms are associated with the first term on the right

over the composition space hand side denoting the effects of unresolved subgrid scale
convection, and the second term on the right hand side rep-
+ o . . . .
1), = O(W)P, (W:x,t)dW. 19 resenting the influence of molecular diffusion.
QD) f_oo QUINPL(TIX.Y (19 The subgrid convective flux is modeled via
To develop a transport equation for the FDF, the time- B _ Q
derivative of Eq.(13) is considered [Cuil W) —(uip P =—T ax; (26)
AP (W;x,1) © Jd (X' ,1) do[W,P(X',1)] The advantage of the decomposititiy. (24)) and the sub-
o fﬁw ot oy sequent modelEq. (26)) is that they yield results similar to
¢ that in conventional LES for the first moment of the FDF.
X G(x"—x)dx’ The first moments corresponding to E¢&4) and(26) are
_ 4 J‘oc &¢a(xlvt) <ui¢a>L:<ui>L<¢a>L+[<ui¢a>L_<ui>L<¢a>L]1 (27)
e ) ot Kbt
Uid ) — (U (d ) ]=—T———, 28
OB OIGO—dx. 2o LU (W@ =T (28
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respectively. The term in brackets in E@7) is the general- o, KU o,
ized scalar flux in the form considered in conventional LES =~ ——+ ——-——= - [(I'+T
(Ref. 14 as pointed out by Gao and O'Briéh.Conse- '

} 20,0,

quently, Eq.(28) becomes identical to Eq12). (d;(a)),_ K Da)L
The closure for the conditional subgrid diffusion is based +2(I'+ 1y X
on the linear mean square estimatittMSE) (Refs. 39, 53
model, which is also known as the IE{Ref. 59 (interaction + 2(<¢(a>w(a)>L_<¢<a)>L<“’(a>>L)-
by exchange with the meganlosure. The model involves the (34)

decomposition of the diffusion term in E¢25), These equations are identical to those which can be derived

E) J i, by filtering Eq.(3) directly, and adopting Eq$12) and(31)
a0 T r x w) P_ for the subgrid flux and dissipation. In such direct moment
« ! ' L closure formulation, however, the terms involvitg,), re-
9 P, 92 Iy I main unclosed. It is observed that the modeled FDF equation
=\ |~ R r . O v) P, (Eqg. (32) is similar in form to the standard modeled equa-
' ! a”rh b L tion for the joint PDF of compositioff

(29

. . ) ) . V. MONTE CARLO SOLUTION OF THE FDF
The first term on the right hand side of this equation denotes

the effects of molecular diffusion in spatial transport of the ~ The solution of the FDF transport equatiogq. (32))
FDF. The second term represents the dissipative nature ¢rovides all the statistical information pertaining to the scalar

subgrid scalar mixing. The LMSE model suggests variable ®(x,t). This equation can be solved most effec-
tively via the Monte Carlo scheme. In PDF methods the

7 Py I Monte Carlo schemes can be utilized in both Eulefiamd
I I X, ox; v LP'- Lagrangiafi®*® contexts. Thus, it is expected that both of the

procedures can be potentially employed for the solution of
the FDF. In the Eulerian Monte Carlo scheme, the FDF is
represented by an ensemble of computational elem@nts
particleg at “fixed” grid points. These elements are trans-
where(), is the “frequency of mixing within the subgrid” ported in the “physical space” by the combined actions of
which is not knownra priori. Analogous to the procedures in resolved scale convection and diffusiémolecular and sub-
Reynolds averaged methods, this frequency can be related gid). In addition, transport in the composition space occurs
the subgrid diffusion coefficient and the filter lengtf);,  due to chemical reaction and subgrid mixing. Prior to this
=Cq(I'+T)/A%. The second moment of E¢B0) provides  work, the Eulerian Monte Carlo method was implemented.

J
__a_%[ﬂm(lv[/a_<¢a>L)PL]! (30)

an expression for the total subgrid scalar dissipation Expectedly, the results were not encouraging. The major dif-
ficulty with the Eulerian formulation lies in the numerical

€,=2T I TV (a) d’w =ZQ 2\ _ 2 implementation of the resolved scale convection. The nu-
) m({ D)L~ (D)D) o o , ,

X X merical implementation via a first order accurate upwind

(31 scheme was shown to produce excessive artificial diffusion
errors. While such errors can be tolerated in PDF metkaids
Mast for some flows they degrade the LES results. In some
cases the numerical errors become significantly larger than
the subgrid and molecular diffusions.

A remedy for the problem noted above is to divorce

where subscripts in parentheses are excluded form the su
mation convention. With the closures given by E@S) and
(30), the modeled FDF transport equation is

dPL (U Pl 9 P ) ) o :
T-ﬁ-T T (r'+ry) — o from the Eulgnan d|§cretlzat|0n and .to invoke the Monte
: : : Carlo solver in a “grid free” Lagrangian manner. The ad-
vantages of Lagrangian numerical methods in reducing the
+ W[Qm( o= (Pa)PL] amount of numerical diffusion are well-recogniz€d® The
“ basis of the Lagrangian solution of the FDF transport equa-
o, (PP, ] tion relies upon the principle afquivalent systenf$*® Two
_9—%' (32 systems with different instantaneous behaviors may have

identical statistics and satisfy the same FDF transport equa-
This equation may be integrated to obtain transport equatiori#on. In the Lagrangian Monte Carlo procedure each of the
for the SGS moments. The equation for the first subgrid moparticles obeys certain equations which govern its transport.
ment, (¢,)., and the generalized subgrid varianae,  These particles undergo motion in the physical space by con-

=iy~ (D(a)i are vection due to the filtered mean flow velocity, and diffusion
due to molecular and subgrid diffusivities. The general dif-
Hpa) KU (Do) I [T HpalL fusion process is represented in a stochastic manner by the
ot * X _a_xi( Ty IX; oo, following stochastic differential equatio(fSDE) (Refs. 40,
(33 63, 649,
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dX;(t)=D;(X(t),t)dt+E(X(t),t)dWi(t), (35) (and other higher moments of the FD& a given point are
estimated by consideration of particles within some volume
'centered at the point of interest. Effectively, this finite vol-
ume constitutes an “ensemble domain” characterized by the
length scaleAg (not to be confused withh ) in which the

5 . .
processs.. A cogpgrlsoq r?fr:hng%kker'Plank equgtlonzcor- FDF is represented discretely by stochastic particles. This is
responding to Eq(35) with the transport equatid32) necessary as, with probability one, no particles will coincide

determines the appropriate specification of the coefficients Qith the point as consideré Here, a box of sizé ¢ is used

be to construct the ensemble mean values at the finite difference
AT +Ty) nodes. These values are then interpolated to the particle po-

E=V2(I'+Ty), Di=(u).+ v (36)  sitions. Since the mixing model only requires the input of the

_ b filtered scalar value, and not its derivative, this volume av-

Thus the SDE which represents the spatial transport of thgraging procedure is sufficient. However, from the numerical

whereX; is the Lagrangian position of a stochastic particle
D; andE are known as the “drift” and “diffusion” coeffi-
cients, respectively, andV; denotes the Wiener-g

FDF is standpoint, determination of the size of the ensemble domain
AT +T,) is an important issue. Ideally, it is desired to obtain the sta-
dX;(t)=| {up) + ———— dt+[2(T+T)]YdW, . tistics from the Monte Carlo solution when the size of
i

37) sample domain is infinitely smali.e., Ag—0) and the num-
ber of particles within this domain is infinitely large. With a
The compositional makeup of the particles evolves simultafinite number of particles, if\g is small there may not be
neously due to the actions of subgrid mixing and reaction enough particles to construct the statistics. A larger ensemble
o domain decreases the statistical error, but may increase the
T —Qn(df —{(Ppa)) + 0g, (38)  dispersion error which man_lfests itself in “artificially dif-
fused” statistical results. This compromise between the sta-
where ¢! = ¢,(X(t),t) denotes the scalar value of the par- tistical accuracy and dispersive accuracy as pertaining to La-
ticle with the Lagrangian position vectos; . grangian Monte Carlo schemes implies that the optimum
In the numerical implementation, the FDF is representednagnitude ofAg cannot, in general, be specifiedpriori.*°
by an ensemble of Monte Carlo particles, each with a set ofhis does not diminish the capability of the procedure, but
scalars¢™(X(M(t),t) and Lagrangian position vecta™.  exemplifies the importance of the parameters which govern
Numerically, a splitting operation is employed in which the the statistics.
transport in the physical and the compositional domains are The LES of the hydrodynamic variables, which also de-
treated separately. The simplest means of simulating3®. termines the subgrid viscosity and scalar diffusion coeffi-
is via the Euler-Maruyamma approximatfin cients, is conducted with the “compact parameter” finite
n un n n U2en difference scheme of CarpentérThis is a variant of the
X7 (t 1) = X7 (1) + Di(t) At+ BN (1) (AD & (1), McCormacK?® scheme in which a fourth order compact dif-
(39 ferences are used to approximate the spatial derivatives, and
where D'(t,) =D;(X"W(ty),t), E"(t)=E(X™M(t),t) and a second order symmetric predictor-corrector sequence is
gi(”) is a random variable with the standard Gaussian PDFemployed for time discretization. The computational scheme
This formulation preserves the Markovian character of thds based on a hyperbolic solver which considers a fully com-
diffusion proces¥ % and facilitates affordable computa- pressible flow. Here, the simulations are conducted with a
tions. Higher order numerical schemes for solving BY) low Mach number 1 ~0.3) to minimize compressibility ef-
are availabl&€® but one must be cautious in using them for fects. The procedure involved in the finite difference discreti-
LES since the diffusion term in Eq35) depends on the zation is independent of the Monte Carlo solver, thus alter-
stochastic procesX(t). The numerical scheme must pre- native differencing schemes can be used if desired. All the
serve the [teGikhmarf®"* nature of the process. The coeffi- finite difference operations are conducted on fixed and
cientsD; andE require the input of the filtered mean veloc- equally sized grid points. The transfer of information from
ity and the diffusivity (molecular and subgrid edilyThese these points to the locations of the Monte Carlo particles is
are provided by the solution of Eq$6)—(12) by a finite  conducted via interpolation. Both fourth-order and second-
difference LES(as described belowon a fixed grid and then order (bilinear interpolation schemes were considered, but
interpolated to the particle location. no significant differences in SGS statistics were observed.
The compositional values are subject to change due tdhe results presented in the next section are based on simu-
subgrid mixing and chemical reaction. Equati@) may be lations with fourth- and second-order interpolations in two-
integrated numerically to simulate these effects simultadimensional2D) and 3D flows, respectively.
neously. Alternately, this equation is treated in a split man-
ner. This provides an analytical expression for the subgrid/|. RESULTS
mixing. Subsequently, the influence of chemical reaction is _
determined by evaluating the fine grained reaction ratgs A. Flows simulated
and modifying the composition of the elements. The imple-  To demonstrate the effectiveness of the FDF method, in
mentation of the SGS mixing and chemical reaction requireshis section simulation results are presented of a temporally
the filtered mean values of the scalars. These mean valuegveloping mixing layer and a spatially developing planar
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jet. Both non-reacting and reacting flows are considered. Iifluxes are modeled via E¢12). No attempt is made here to
the latter, a simple reaction of the typé+.%2—>is con-  determine the magnitudes of the constants appearing in these
sidered in which the reaction is assumed to be constant rataodels in a dynamic mann&t.However, several different
and non-heat releasingsothermal flow. Therefore,w ,  values are considered f@s andC,. The values which give
=w »=—KAB, whereK is a constant ané,B denote the the best overall agreement with DNS in non-reacting flows
mass fractions of species?, .%, respectively. The species areCy=0.014, 0.01 an€=0.02, 0.013, in 2D, 3D, respec-
A, 7, 7 are assumed thermodynamically identical and thdively. These values are subsequently used in FDF and
fluid is assumed to be calorically perfect. Both 2D and 3DLES-FD of scalar quantities in reacting flows. This param-
simulations are conducted of the temporal mixing layer. Theeterization is justified since the LES of the hydrodynamic
jet simulations are 2D. field is not the subject of our FDF closure. The other param-

The temporal mixing layer consists of two coflowing eters Se=1, S¢=0.7 are kept fixed. In the MKEV model,
streams traveling in opposite directions with the sameghe ratio of the filter size at the secondary level to that at the
speed*~"" The reactants# and.# are introduced into the grid level is Ag//Ag=3. In the implementation of the
top and the bottom streams, respectively. In the planar jefMKEV in the shear flows as considered, the magnitude of
the reactant# is injected with a high velocity from a jet of the reference velocity”; is set to zero in the cross-stream
width D into a coflowing stream with a lower velocity car- direction and to the average of the high and low speed
rying reactant .58 Both these flows are dominated by streams in the streamwise direction. The subgrid mixing
large scale coherent structures. The formation of these strugrodel requires the input of the constady, in the mixing
tures are expedited by imposing low amplitude perturbationsfrequency which also determines the SGS variances. As will
In the figures presented below,y correspond to the stream- be shown belowC(~3 is suggested, but the influence of
wise and cross-stream directions, respectively. In 8dg-  this parameter is also studied by considering otgrval-
notes the spanwise direction. In the temporal mixing layerues.
the length in the streamwise direction is chosen to be twice The flow variables are normalized with respect to refer-
the wavelength of the most unstable mode to allow for theence quantities denoted by the subscripin the temporal
rollup of two large vortices and on@ubsequentpairing of ~ mixing layer the reference quantities are the freestream val-
these vortices. In 3D, the lengths in the streamwise and thees and the length, is defined such thatd,,/L,)=2.83,
cross-stream directions are the same as those in 2D. Thehered,q is the initial vorticity thickness. In the planar jet,
length in the spanwise direction is 60% of that in the streamL,=D and the reference quantities are those at the high
wise direction. The forcing is imposed in such a way tospeed jet stream. The reference quantities define the Rey-
provide significant 3D transpof?:2° The initial values of the nolds number Re (U,L,/v). For the temporal mixing layer,
mass fractions of reactantg and.” at each of the spanwise the Reynolds number based on the total velocity difference
points in 3D are identical to those in 2D. The size of theacross the layerXU=2U,) is given by Rg =5.66 Re. The
domain in the jet flow is &x<14D, —3.5D<y=<3.5D. reaction rate is parameterized by the Daimko number
The velocity ratio of the coflowing stream to that of the inlet Da=K/(U,/L,). The non-dimensional time is given W
jet is kept fixed at 0.5. =(U,t/L,). In the presentations below, the asterisk is

Both flows are simulated via both DNS and LES. Thedropped.
procedure in DNS is exclusively based on the finite-
difference solution of Eqs1)—(4) in which there are suffi-
cient grid points to resolve the flow without a need for sub-
grid closures. The procedure in LES is based on the Monte The magnitude of the flow parameters considered in the
Carlo solution of the modeled FDF transport equatifigq.  simulations are dictated by the resolution which can be af-
(32)) for the scalars augmented by the finite difference soluforded by DNS. The primary parameters are the flow Rey-
tion of the modeled equations of the filtered hydrodynamicnolds numbefRe), the DamKkdler numberDa) and the mo-
variables(Egs.(6)—(7)). In the presentation below, these re- lecular Schmidt number. All finite difference simulatiofis
sults are identified by the abbreviation FDF. In addition, an-both DNS and LE$are conducted on equally-spaced, square
other LES is conducted in which the modeled transport equatAx=Ay=Az (for 3D)=A) grids. Since the size of the
tions for the filtered scalar and the generalized subgridcomputational domain is fixed, the numliand the sizgof
variance are simulated with the finite difference scheme. Irthe grids depends on type of simulation being conducted.
these simulations, the hydrodynamic solver and the model§he highest resolution in DNS of the 2D temporal mixing
for the subgrid stresses and mass fluxes are identical to thofsyer consists of 438577 grid points which allows reliable
employed in FDF, but the effects of SGS fluctuations in theDNS with Re=500 and D& 2 (based on the velocity differ-
filtered reaction rate are ignored. Effectively, E(3)—(34) ence and the vorticity thickness at the initial timE€he DNS
are solved with the assumptidw ,(®)), = w,((P), ). The of the 3D temporal mixing layer is conducted on X789
results based on this procedure are referred to as LES-FDX 133 grid points with Re400, Da=1. The resolution in
(The approximatioqw ,(®)), =(w,((®)_))_ was also con- DNS of the planar jet consists of 72B61 grid points and
sidered but did not show an improvement over LESJFD. allows accurate simulations with R42 000 and D& 2

In both FDF and LES-FD simulations, the subgrid (based on the centerline velocity at the inlet and the jet
stresses are modeled via the Smagorinsky clogEmgs.(9)—  width).
(10)) and the MKEV model(Eqg. (11)). The subgrid mass The FDF and LES-FD are conducted on grids coarser

B. Numerical specifications
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than those in DNS. Unless otherwise specified, the LES reso
lutions in the mixing layer consist of 3749 grid points in
2D, and 5% 73X 34 grid points in 3D. For the planar jet, a
resolution of 10K 51 is used for nonreacting flow simula-
tions with Re=5000, while a 18k 91 grid is utilized for
reactive flow simulations with Da2 and Re=12 000. A
top-hat filter functiofi” of the form below is used

(a) (b)

Np
G(x'—x)=I1 G(x{—x,
=t (40)

T Ag
J— x| < —
AG |X| XI| 2

G(Xi’ —Xj)= FIG. 1. 2D mixing layer simulation results: Contours of the filtered con-

AG
served scalani@ FDF and(b) LES-FD.
0 |Xi/_xi|>7 1) (b)

numberg. In the context of ltocalculus®?® this issue is

considered by analysis of moments of the FDF up to the

second order.

In FDF, the Monte Carlo particles are distributedtat TheHS|muI<‘";}ted . re_sults”are analyzed both . Instanta-
neously” and “statistically.” In the former, the instanta-

=0 throughout the domain. In the temporal mixing layer, the )
particles are distributed evenly throughout the whole compu[]eous contourésnap-shotso‘f‘ the scalar values a”re coqsuj-
tational region. In the FDF of the jet, the particles are sup-ered' In gh? Iattehr, _the Reynoldsciaveraged s.tgtlstgsl
plied initially in the inlet region—1.7D<y<1.79D. In all fr?gztr:fitaell ég\r:]elt) ?nmiﬁrgcvet%f avaetraaaiLe C?gi;;&?e .isn
the simulations, the particle density is monitored at all timescondScted yvia sam%lir?gj in time. In the ?err?prc))ral mixing
to ensure an approximately uniform distribution throughoutlayer, the flow is homogeneous in(andz in 3D): thus the

the mixing regions. In the temporal mixing layer, due to flow tatist ; nerated b nstructing the ensemble from all
periodicity in the streamwise direction, if the particle leaves> o =1cS are generated by constructing the ensembu’e 1rom a
the grid points in the streamwigand spanwisedirections.

the domain at the right or the left boundary, new patrticles ar -~ -
introduced at the other boundary with the same composﬁ--hese statistics arg—t dependent. All Reynolds averaged

tional values. A similar procedure is employed in the span—resmtS are denoted by an overbar.
wise direction in 3D simulations. Due to mirror symmetry at
the upper and lower boundaries, particles that exit the top og
bottom boundaries return to the domain at the opposite
boundary with the mass fractions values associated with The objective in the results presented in this subsection
and.7 interchanged. In the spatial jet, new particles are indis to demonstrate the consistency of the FDF formulation and
troduced at the inlet at a rate proportional to the local flowthe convergence of the Monte Carlo simulations. For this
velocity and with a compositional makeup dependent on thg@urpose, the LES results via FDF and LES-FD are compared
y coordinate. The density of the Monte Carlo particles isagainst each other in shear flows under different conditions.
determined by the initial number of particles per grid cellIn non-reacting flows, any deviations between the FDF and
(NPG) of dimensionA XA (XA in 3D). The magnitude of LES-FD results are attributed to the differences in the nu-
NPG is varied to assess its affect on statistical convergenamerical procedures. Since the accuracy of the finite differ-
of the Monte Carlo results. This assessment is demonstrategshce procedure is well-established, this comparative analysis
in 2D simulations of the temporal mixing layer. The simula- provides a good means of assessing the performance of the
tions of 3D temporal layer and the spatial jet are based oMonte Carlo solution of the FDF. Unless specified other-
NPG=20. The size of the “ensemble domain” in the FDF wise, the Smagorinsky model is used to evaluate the eddy
simulations is also varied to assess its influence on the staiscosity in the simulations considered in this subsection.
tistical convergence. The following sizes are considered: In Fig. 1, results are presented of the LES of the non-
Ag=2A,A,A/2. The number of samples used to constructreacting temporally developing mixing layer. Shown in the
the FDF is thus controlled by the values of NPG dngl. figure are the contour plots dfA), via (&) FDF and (b)

An additional parameter which influences the numericalLES-FD, with A=0, 1 on the bottom and top streams, re-
accuracy is the magnitude of the incremental time step. Thepectively. These contours correspond to results at a time
stability criterion for the finite difference scheme requifes when the flow has experienced the pairing of two neighbor-
CFL<1A3 and is more stringent than the criterion for the ing vortices. This figure provides a simple visual demonstra-
Fourier number. The effect of the time increment on thetion of the consistency of the FDF as the results via the
accuracy of the Euler-Maruyamma scheme is also considparticle method are in agreement with those obtained by
ered. This is assessed by considering sevktalalues(CFL ~ LES-FD. In fact, the Monte Carlo results are somewhat more

in which Np denotes the number of dimensions, ahd
=2A. No attempt is made to investigate the sensitivity of
the results to the filter functidfi or the size of the filtef!

. Consistency of FDF and convergence of the Monte
arlo procedure
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attractive due the Lagrangian nature of the solution proce- 1.0 : ‘ .
dure. While the LES-FD results display slight over- and _—_—_'EEIS:-'ZDzNZ
under-shoots, there are no such errors in the Monte Carlo 0.8 | |---- FDF, a4 1
scheme. —-— FDF, A.=24
A more rigorous means of assessing the FDF results is 0.6 .
via consideration of the Reynolds averaged results. Figures 2~ <A>.
and 3 show such results in the non-reacting temporal mixing 0.4 - .
layer in which the sensitivity of the FDF predictions to sev-
eral parameters is assessed. Figu® &hows the compari- 02 r 1
son of FDF and LES-FD results f¢A), for several values
of Ag. It is shown that the first filtered moment of the FDF 0%00 0.0 00 100 200
agrees very well with that obtained by LES-FD, even for (@) y
large Ag values. The differences between the FDF and
LES-FD results are more apparent in Figth,2,d where the 0.12 —— ——— ' '
cross-stream variations of, are shown for several values of 0.10 k| = FOF aca2 |
Ag andC, and for different LES grid resolutions. As ex- ) _ EBE; ﬁ;ﬁm
pected, Figs. (,c) show that with increasin@, , the mag- 0.08 - .
nitude of the variance decreases. These figures also indicate  __
that the difference between FDF and LES-FD predictions Ox 006 1
diminish asAg decreases. This is also corroborated in Fig. 0.04 L ]
2(d) in which the both FDF and LES-FD are conducted on
61x 81 grid points. At allA¢ values, the agreement between 0.02 | .
FDF and LES-FD is better than those shown in Fith)2
with a lower finite difference resolution. The consistency of 0'0920‘0 -10.0 0.0 10.0 20.0
the FDF and LES-FD results does not mean that the magni-  (b) y
tude of C(, can be specified. Hereinaft€,=3 is adopted
since it provides the best overall match with DNS data as 0.10 —— (ESFD ‘ '
shown in the next subsection. — — - FDF, A=t/2
The other parameters which influence the accuracy of 0.08 2T igiiﬁing |
the Monte Carlo results are the number of Monte Carlo par-
ticles per grid cel(NPG) and the magnitude of the incre- - 0.06 )
mental time step. Figure(® shows thato, values do not * 0.04 - |
vary significantly for NPG-50. In fact in other cases even )
smaller NPG values can be used as will be shown. Figure 0.02 - i
3(b) verifies the insensitivity of statistics bt as long as the ’
stability criterion is satisfied (CFs1W3). Hereinafter, 0.00
CFL=0.5 is used. 20,0 -10.0 0.0 10.0 20.0
The sensitivity of the results to NPG adg in the FDF (c) y
simulations of a reacting temporal mixing layer with -Ba 0.10 ‘ . .
is studied in Fig. 4. In these simulations, the MKEV model is —— (E5FD
adopted to evaluate the subgrid viscosity because it performs 0.08 L —--- Eg';: 2::2’2 |
somewhat better than the Smagorinsky model for LES of — - — FDF, 5.2
reactive flows(as assessed by DNS data in the next subsec- 0.06 | N 1
tion). Shown in the figure are the Reynolds averaged values 55 /. 2
of the filtered product mass fractiodR), ) at a fixed time 0.04 L \ I ; i
(Fig. 4@) and the integrated total productSg(t) .r,'ﬂ\‘\\ i by
= [(P)_(y,t)dy). The convergence of Monte Carlo solution 0.02 L \ i
and the independence to NPG aAd are demonstrated by
these resultgat least for this first momentMoreover, it is 0.00 ‘
shown that while the mean value of the scalar as used in the ) 200  -100 0\-(0 10.0 20.0

mixing model for a given particle should be evaluated at the
particle location, the mean value at the nearest finite differ-
ence grid point could also be substituted. This eliminates the
need for interpolating the mean scalar field to the particle

locations.
The consistency and the convergence of the Monte CarIEIG' 2. 2D mixing layer S|m_ulat|0n result@) Conse_rved scalar distribution
Vs. the cross-stream coordinate. Generalized variance vs. cross-stream coor-

Siml_JlatiO_n Of_ the FDF_ in the nonre_aCting jet flow are sum-ginate at(b) Co=1 and(c) Co=3. (d) Same agb) but with increased
marized in Figs. 5—6 in which the time averag&tynold$  resolution.
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0.08 . . .
— NPG=50
-~ - - NPG=100
0.06 - — — - NPG=250 |
Cn 0.04 | 1
0.02 | .
0.00
20.0 20.0
(a)
0.08 : . ]
—— CFL=0.5
- - ~- CFL=0.25
— — - CFL=0.1
0.06 |- i
G 0.04 - .
0.02 - .
0.00 1 ' '
-20.0 -10.0 0.0 10.0 20.0

(b)

FIG. 3. 2D mixing layer simulation result&) Cross-stream variation of the
generalized variance for various NP(®) Generalized variance vs. cross-
stream coordinate at various CFL numbers.

y

0.40 . ' T
—— NPG=100, A=A
~~~~~~~~~~~ NPG=40, A=A
- - —- NPG=100, A=2A
0.30 - | — —- NPG=100, A=A b
<P>_ 020} ]
0.10 | i
0.00 ! '
-20.0 -10.0 0.0 10.0 200
(a) y
2.5 T T T
——— NPG=100, A=A
----------- NPG=40, A=A
2.0 | ---- NPG=100, A=2A b
— — - NPG=100, A=A
15 i
89
1.0 - 1
05 1
0.0 ' ' '
0.0 100  20.0 400 50.0

(b)

FIG. 4. 2D mixing layer simulation result&) Cross-stream variation of the
product mass fraction(b) Total product vs. time. The long-dashed line

t
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1.0
—— LES-FD
-~ ~ FDF, A=A
0.8 || —-- FDF,A=2A 1
__ 06 E
<A>
0.4 R
0.2 | -
0.0
-2.0 0.0 2.0

FIG. 5. 2D planar jet results: Conserved scalar distribution vs. cross-stream
coordinate ak=5D, 9D.

statistics for the first and second subgrid moment# afre
presented. Similar to the temporal mixing layer results, Fig.
5 shows the accuracy of the Monte Carlo solver and the
insensitivity of results ta\ g for the first moment of the FDF.
Similarly, for the scalar variance, the agreement between the
FDF and LES-FD results diminishes as the sizeAgf is
decreased. Ax=5D, the FDF results witlA=A are very
close to those via LES-FD. With the samg values the
agreement is not as goodat 9D and lower values of\

are needed to achieve a better agreement for the subgrid
variance. However, as will be shown below, with this reso-

T
—— (ESFD
- —— FDF, A=A

0.08

0.06 -

0.04

0.02 -

0.00
-2.0

(@ y

2.0

T
0.08 | — LES-FD i
- - - FDF, A=A
— - - FDF, A=2A

0.06

0.04 -

(b)

represent the case where the mean value of the scalar in the mixing model
for a particle is set to be equal to the value at the nearest finite differenc€&IG. 6. 2D planar jet results: Generalized variance vs. cross-stream coordi-

grid point.

nate at(a) x=5D and(b) x=9D.

Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



508 Phys. Fluids, Vol. 10, No. 2, February 1998

1.0

0.8

0.6 5,

<A> , FDF

0.4

02 |

0.0 . ) L (@)

0.0 0.2 0.4 0.6 0.8 1.0
<A>, LES-FD
FIG. 7. 3D mixing layer simulation results: Scatter plot of the filtered values
of a conserved scalar as obtained by FDF vs. those via LES-FD.
3

lution the mean filtered values of reacting scalars are pre-
dicted reasonably well.

The consistency of the FDF simulation in 3D is demon-
strated in Fig. 7 in which the scatter plot is shown of the
instantaneous filtered values as obtained by FDF vs. those
via LES-FD. The hydrodynamic LES is based on MKEV in
both simulations. The correlation coefficient between the
data obtained by the two simulations is 0.99. This excellent
correlation is also reflected in the cross stream profiles of th
Reynolds-averaged filtered quantities in Fig. 8.

D. DNS validations of the FDF

The objective in this section is to assess the overall pe
formance of the FDF and to appraise the validity of the sub-
models employed in the FDF transport equation. For thijg_
objective, the FDF results are compared against DNS of th

(b)

same flow configuration with the same magnitudes of Re an
Da. For a meaningful comparison, the DNS data are fiItere(z"
and the results on the coarse grids are compared with tho
on the corresponding coarse grids in the FDF simulations. Tgt
illustrate the capability of the FDF, the results are also com
pared with LES-FD in which the effects of SGS fluctuations
on the filtered reaction rate are ignored.

Colucci et al.
12.0 T T T T
——— 433X577
— — - 289X385
10.0 F|----37x49 -
8.0 -
6.0 |
4.0 _ -
2.0 i i 1 1
0.0 10.0 20.0 30.0 40.0 50.0
t

5.0 | —— 433X577 - N

— —- 289X 385 e

- -—-37X49 .
4.0 - -
3.0 + // i
20 r 7 e d
10 77 1
0‘0 1 1 i 1
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t

IG. 9. 2D mixing layer simulation results: Effect of grid resolution on
emporal evolution of théa) vorticity thickness andb) total product.

First the resolution requirement for DNS is determined.
“This is demonstrated here for the 2D mixing layer. A similar
rocedure is followed for the other flow configurations. In
ig. 9 results are presented of the temporal evolution of the
§orticity thickness §,) and the total productdp) in a react-

g layer with Re=500, Da=2 at several resolutions. It is
hown that the results generated via 2885 are almost
Y§entical to those on 433577 grid points. Analysis of other
atistical resultgnot shown show a similar behavior. Here-
inafter 433x 577 grid points are used in all DNS of the 2D
mixing layer. The resolution employed in LE®oth FDF

1.0 T T 1.0 T
—— ESFD, 122
--------- LES-FD, t=44
08 |- pore 1 08
06 § 0.6
<A> iq dy
04 b 0.4
0.2 i b 0.2
/
0.0 L : 0.0 !
-20.0 -10.0 0.0 10.0 20.0 0.0 10.0
y -

20.0

30.0
t

40.0

50.0

FIG. 8. 3D mixing layer simulation results: Cross-stream variations of theFIG. 10. 2D mixing layer simulation results: The integrated Reynolds aver-

mean value of the filtered mass fraction of a conserved scalar.

aged values of the filtered scalar’s variance vs. time.
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10.0 | | —— C.=0.001141 /s .
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FIG. 11. 2D mixing layer simulation results: Total SGS unmixedness and FIG. 13. 2D mixing layer simulation results: Vorticity thickness vs. time.
Reynolds subpart vs. cross-stream coordinate.

on the Smagorinsky closure affects both the resolved hydro-

and LES-FD is coarser consisting of 3749 grid points. dynamic field and the subgrid scalar mixing process. It is
The results in Fig. 9 indicate the inaccuracy of “DNS” at known that the Smagorinsky closure sometimes generates
this resolution. excessive damping on the resolved scales in transitional

To determine the magnitude &, , in Fig. 10 the inte- regions?® Here, an attempt is made to rectify the situation,
grated Reynolds averaged values of the SGS variancalbeit in a veryad hocmanner. In the temporal mixing later,
(fo'_A(y,t)dy) of a nonreacting scalar as predicted by FDFC; should be initially zero to reflect the fact that the flow is
are compared with those via DNS. This comparison showslaminar.” Then its value should increase in time as the
that C,~3 vyields a reasonable agreement between the prdlow becomes more “turbulent.” The FDF results in Fig. 12
diction and DNS results. Thus, this value is used in absencweith Csxt agree more favorably with DNS. This is partly
of a better model of the subgrid mixing frequency. due to better predictions of the hydrodynamic fighig. 13

To demonstrate the difficulty of modeling the SGS scalarbut also due to more accurate representation of the subgrid
fluctuations in reacting flows, the Reynolds averaged profilegnixing frequency. This better agreement is not sufficient to
for the “SGS unmixedness” £ag=(AB), —(A) (B),) and  suggest a new model fe&;; rather it is to demonstrate the
its “Reynolds” subpart*®° R,g=(A’B’), —(A’) (B’') as importance of the subgrid diffusion in affecting the FDF di-
obtained directly from DNS data are shown in Fig. 11. Theseectly (through the subgrid mixingand indirectly (through
results show the importandeon-zero valugsof these cor-  the input of the hydrodynamic parameters
relations. They also show th&,g is a fraction ofr,g sug- In order to better predict the subgrid viscosity, the
gesting that modeling of g in LES is more complex than MKEV model (Eq. (11)) is adopted. In Fig. 13 it is shown
that in Reynolds procedures. that the vorticity thickness predicted by the MKEV model

In Fig. 12, the FDF predictions of the total product are compares with DNS data better than that via the Smagorin-
compared with DNS results. The Smagorinsky model is emsky model. The improved prediction of the eddy viscosity
ployed in FDF with several values of the paramelgr Ob-  also improves the FDF predicted product formation as shown
viously for a constan€, value, the agreement between DNS in Fig. 14 for several values of the Danter number. Due
and FDF is not very satisfactory. The subgrid viscosity basedo the demonstrated superiority, the MKEV closure is uti-

lized in all subsequent simulations unless otherwise noted.

3-0 T T T T
—_—-DNS 3.0 T T T T
----------- C,=0.01
¢ G—ODNS, Da=0.025
- g_=g.g;4 3—0 DNS, Da=0.1
=0. A&—~ADNS, Da=2.
20 | L==C000114t G ® - @ FDF, Da=0.025 4
2 w — - FDF, Da=0.1 2 4
e 2.0 I la - AFDF. Da2 g
Sp I A - z
N 8 ]
- ~ / P
1.0 | ol ] , /
FEEEE 1.0 - = 7 1
4 AT = A
0.0 . ' ' ' ]
0.0 10.0 200 300 400 500 0.0 . ! ! !
t 0.0 10.0 200 300 400 500

FIG. 12. 2D mixing layer simulation results: Total product variation with
time. The Smagorinsky model is used to represent the eddy viscosity for thEIG. 14. 2D mixing layer simulation results: Temporal evolution of the total

FDF simulations.

product.

t
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FIG. 17. 2D planar jet simulation results: Contours of the normalized in-
stantaneous subgrid unmixednéasDNS, (b) FDF.

. 50.0
(b) t

FIG. 15. 2D mixing layer simulation result&a) Cross-stream variation of
the product distribution(b) Temporal evolution of the total product.

0.025 0.050

0.0 0.2 0.4 0.6 0.8 1.0

0.025 0.050

(b) <A>,
0.00 0.025 0.050

FIG. 16. 2D mixing layer simulation results: Scatter plots of instantaneous

value of the conserved scalar vs. the mean value. Data taken(&dbpiNS, FIG. 18. 2D planar jet simulation results: Instantaneous reaction rate as
(b) FDF throughout the computational domain. determined bya DNS, (b) FDF, (c) LES-FD.
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(a) y
0.50 :
—TVTS FIG. 21. 3D mixing layer simulation results: Cross-stream variation of the
— —_ FDF product distribution.
0.40 - | —-- (esFD .
7= 0.30 r i large. Therefore it is expected that the effects of the SGS
t unmixedness are very pronounced in such applications. To
0.20 r verify that the enhanced product formation in LES-FD is not
associated with the numerical discretization errors, an addi-
010 r ) tional FDF is conducted in which the filtered reaction rate is
“incorrectly” calculated in terms of the filtered values of the
0'00_2.0 2.0 reactants’ mass fractions. The results based on this model are

(b)

FIG. 19. 2D planar jet simulation results: Cross-stream variation of the
mean product mass fraction @ x=5D and(b) x=9D.

identified by FDE in Fig. 15a) and consistent with LES-FD
results, overpredict the rate of reactants’ conversion.

It is useful to compare the DNS results for “fine grid”
scalar values with the “fine-grained” values associated with
the Monte Carlo particles. The “scatter” plots of the instan-

. taneous fine grid values &k vs. its filtered valug/A), as
To demonstrate the importance of the SGS scalar fluc- g &AL

. . -obtained by DNS are presented in Fig(d6and the scatter
tuations, the results of FDF and LES-FD are compared wit lot of fine)g/;rainedﬁ\ varl)ues VS{A), is gh(?wn in Fig. 16)
DNS resuIFs in Fig. 15. This _f|gure :_shows that the qeglect %These results are associated with a non-reacting temporal
SGS unmixedness results in significant overpredictions o ixing layer and are taken at a fixed time. The points in Fig
the product mass fraction. This behavior is observed at ai . - :
. .. X a) correspond to the values at all the grid points employed
times and all values of the Damiier number(Fig. 15b)) 6@ b gnap ploy

X : . . 2 in DNS within the computation domain. The points in Fig.
and is gon5|stent with that in Reynolds averggll dlore- 16(b) correspond to all Monte Carlo particles occupying the
over, "F|g. 1) shows that as the magnitude of th? same domain. It is shown that the “density” of scatter is
Damkdﬂ_er number increases, the ”eg'?C‘ of the SGS UNMXSimilar in the two plots indicating a qualitative agreement
edness in LES-FD results in progressively higher dev'at'orbetween FDF and DNS. However. the scatter in FDF is ex-
of product formation relative to DNS. This is significant :

since the Da values in practical reacting systems can be qui

%ectedly somewhat greater but not with a significant density.

1.5 T T 4.0 T T T T
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DN --—- LESFD ,
- FDR — — - FDF, MKEV /
—-- LESFD 3.0 L FDF, Smagorinsky] S E
1.0 [ — //
5p L - 5p 20 | i
’ e
05 t P |
el 1.0 b 1
(/
0.0 : : 0.0 £ ' ' ' '
0.0 5.0 10.0 15.0 0.0 10.0 20.0 30.0 400 50.0

t

FIG. 20. 2D planar jet simulation results: Total product vs. the downstreanFIG. 22. 3D mixing layer simulation results: Temporal evolution of the total

coordinate.

product.
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TABLE I. Total computational times for the 2D reacting mixing layer simu- TABLE Ill. Total computational times for the 3D reacting mixing layer

lations. simulations.

Simulation  Grid resolution NPG Normalized CPU tifne Figure Simulation  Grid resolution NPG  Normalized CPU tifne Figure
DNS 433<577 — 285.45 14, 1(b) DNS 217<289x 133 - 182.71 21, 22
FDF 37x49 40 8.45 14 FDF 55x 73x 34 20 7.64 21, 22

LES-FD 37x49 — 1 18b) LES-FD 55 73X 34 - 1 21, 22
8Unit corresponds to 11 s on a Cray-C90. 8Unit correspond to 655 s on a Cray-C90.

The effectiveness of the FDF to predict the slightly more

complex jet flow is summarized in Figs. 17—-20. Figure 17 | . dicting the hvdrod i field imilar t
shows the instantaneous contours of the normalized SGS uff-o>u €S 1N preaicting the hydrodynamic Tield are simifar to
ose in 2D. With either closures, the amount of products

mixedness as obtained by filtered DNS and FDF. Note thal dicted by LES-FD is higher than th btained by EDE
this term is assumed to be identically zero in LES-FD. ThePredicted by “FD s higher than t 0s€ 0 tained by
nd DNS. The FDF results are again in a good agreement

SGS unmixedness is negative throughout the reaction zong‘,, . - )
thus its effect is manifested in a decrease of the filtered reWIth DNS dafca. This agreement aIsp '”d'C?‘teS th_at the mix-
action rate. This is readily observed in Fig. 18, where the"9 model with CQ:3.works we_II n 3D S|mulat|.ons; no
contour plots of the reaction rates are displayed for the fijattempt was mgde to find the opt|m|z(_a vaIu_e of this constant.
tered DNS, FDF and LES-FD approaches. While the pea|fqture apphcatmns to other flow configurations would deter-
values in the DNS are slightly higher than those observed ifine the generality of the model.
the FDF simulations, the reaction zone predicted by the FDF
simulation is slightly thicker(due to the finite size of the
ensemble domajntherefore yielding a comparable amount
of converted products. In contrast, the filtered reaction rates . ) )
obtained by the finite difference LES procedure in which the®: COmparison of computational requirements
SGS unmixedness is neglected are significantly higher. This The total computational times associated with some of
is reflected in Fig. 19, where the cross-stream variation of theéhe simulations are shown in Tables I-Ill. The cases consid-
time-averaged filtered values of the product mass fraction arered in this table are those which give reasonably accurate
presented at two downstream locations and in Fig. 20, whergredictions of the first FDF moments of the reacting scalar
the streamwise variation of the integrated total producfield. Expectedly, the overhead associated with the FDF
(8p(X)=J{P)_(x,y)dy) is shown. Two additional points simulation is somewhat extensive as compared to LES-FD;
are intended by presentations of Figs. 19 and 20. First, theevertheless the FDF’s computational requirement is signifi-
FDF results are compatible with those of DNS at all down-cantly less that of DNS. While this overhead was tolerated in
stream coordinates. Therefore, there is no “secular” behavpresent simulations, there are several means of reducing it
ior associated with possible modeling errors in the FDF. Secfor future applications. A detailed examination of the indi-
ond, the differences between the FDF and DNS in predictingidual routines utilized in the FDF simulations indicates that
the subgrid scalar variances at larg® values as observed the most demanding computation is associated with the par-
in the variance results in Fig. 6 do not seem to yield signifi-ticle interpolation procedure. The fourth order interpolation
cant differences in the amount of product formation as preroutine consumes about 51.3% of the total CPU time. The
dicted by the FDF. In all the cases the neglect of the SG%ilinear scheme reduces the computational time by 36%. If
fluctuations, as done in LES-FD, results in significant over-interpolation can be totally disregarded, i.e., using the results
predictions of the filtered reactant conversion rate. It is ex-at the nearest finite difference grid point as shown in Fig. 4,
pected that these overpredictions would become even motke CPU time can be decreased by 50%. In addition, the
significant at higher Damltder and Reynolds numbers. Lagrangian procedure would benefit from the utilization of

The major conclusions drawn from the 2D results areparallel architecture, since a significant portion of the time is
confirmed in 3D simulations. The cross-stream variation ofdevoted to computations in large loops dimensioned by the
the filtered mean products and the temporal variation of thgotal number of Monte Carlo particles. This has been dis-
total product in the 3D mixing layer are shown in Figs. 21 cussed for use in PDfRef. 86 and its utilization is recom-
and 22. The performances of the Smagorinsky and MKEVimended for FDF.

In comparing the computational requirements of FDF
with those of DNS, it is important to note that this compari-

TABLE Il. Total computational times for the reacting jet simulations. son could be made only in flows for which DNS was pos-
sible. The DNS times and the FDF times are as close as they
are simply because the DNS had to be done at low Re, Da
DNS 721x361 — 52.12 18 values. At higher values of these parameters, the difference

Simulation  Grid resolution NPG  Normalized CPU titne Figure

FDF 181191 20 12.56 1) could be much greater. This warrants further extensions and
LES-FD 181x91 — 1 180) o )
applications of FDF for more complex turbulent reacting
3Unit corresponds to 809 s on a Cray-C90. flows for which DNS is not possible.
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VIl. CONCLUDING REMARKS mended. These could be useful in future applications in com-
plex flows. The FDF methodology will benefit from ongoing

It is demonstrated that the filtered density functionand future improvements in PDF schemes from both model-

(FDF) provides a powerful method for large eddy simulationing and computational standpoinfs.

(LES) of turbulent reacting flows. The method is based on
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