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Filtered density function for large eddy simulation of turbulent
reacting flows
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A methodology termed the ‘‘filtered density function’’~FDF! is developed and implemented for
large eddy simulation~LES! of chemically reacting turbulent flows. In this methodology, the effects
of the unresolved scalar fluctuations are taken into account by considering the probability density
function~PDF! of subgrid scale~SGS! scalar quantities. A transport equation is derived for the FDF
in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing
and convection within the subgrid are modeled. The FDF transport equation is solved numerically
via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential
equations~SDEs! are obtained. These solutions preserve the Itoˆ-Gikhman nature of the SDEs. The
consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance
of the closures employed in the FDF transport equation are assessed by comparisons with results
obtained by direct numerical simulation~DNS! and by conventional LES procedures in which the
first two SGS scalar moments are obtained by a finite difference method~LES-FD!. These
comparative assessments are conducted by implementations of all three schemes~FDF, DNS and
LES-FD! in a temporally developing mixing layer and a spatially developing planar jet under both
non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF
yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in
reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are
significantly different from those based on DNS. The FDF results show a much closer agreement
with filtered DNS results. ©1998 American Institute of Physics.@S1070-6631~98!01402-0#
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I. INTRODUCTION

Over the past 30 years since the early work
Smagorinsky,1 significant efforts have been devoted to lar
eddy simulation~LES! of turbulent flows.2–12 The most
prominent model has been the Smagorinsky eddy visco
closure which relates the unknown subgrid scale~SGS! Rey-
nolds stresses to the local large scale rate of flow stra13

This viscosity is aimed to provide the role of mimicking th
dissipative behavior of the unresolved small scales. The
tensions to ‘‘dynamic’’ models14,15 have shown some im
provements. This is particularly the case in transitional fl
simulations where the dynamic evaluations of the empir
model ‘‘constant’’ result in~somewhat! better predictions of
the large scale flow features.

A survey of combustion literature reveals relatively litt
work in LES of chemically reacting turbulent flows.7,16 It
appears that Schumann17 was one of the first to conduct LE
of a reacting flow. However, the assumption made in t
work simply to neglect the contribution of the SGS sca
fluctuations to the filtered reaction rate needs to be justi
for general applications. The importance of such fluctuati
is well recognized in Reynolds averaged procedures in b
combustion18–20 and chemical engineering21–24 problems.
Therefore, it is natural to believe that these fluctuations
4991070-6631/98/10(2)/499/17/$15.00
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also important in LES. McMurtryet al.,25,26 Sykeset al.,27

Liou et al.,28 Menonet al.,29 Boris et al.,30 Furebyet al.,31,32

Cook et al.,33,34 Mathey and Chollet,35 Branley and Jones36

and others provide several means of conducting LES of
bulent reacting flows.

Modeling of scalar fluctuations in Reynolds averag
methods has been the subject of broad investigations s
the pioneering work of Toor.37 An approach which has
proven particularly useful is based on the probability dens
function~PDF! or the joint PDF of scalar quantities.38–41The
systematic approach for determining the PDF is by mean
solving the transport equation governing its evolution.42 In
this equation, the effects of chemical reaction appear i
closed form; this constitutes the primary advantage of
PDF schemes in comparison to other statistical procedu
The use of PDF for LES was suggested by Givi7 and its first
application is due to Madnia and Givi.43 In this work, the
Pearsonfamily of distributions are assumed to character
PDF of SGS scalars in homogeneous flows under chem
equilibrium conditions. This procedure was also used
Cook and Riley.44 The extension of assumed PDF metho
for LES of non-equilibrium reacting shear flows is report
by Frankelet al.45 While the generated results are encoura
ing, they do reveal the need for more systematic scheme
which the transport of the PDF of SGS scalar quantities
© 1998 American Institute of Physics
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considered. Pope16 introduced the concept of ‘‘filtered den
sity function’’ ~FDF! which is essentially the PDF of SG
scalar variables. With a formal mathematical definition of t
FDF, Pope16 demonstrates that the effects of chemical re
tion appear in a closed form in the FDF transport, thus m
ing it a viable candidate for LES of chemically reactin
flows. Gao and O’Brien46 develop a transport equation fo
the FDF and offer suggestions for modeling of the unclo
terms in this equation.

The objective of the present work is to further demo
strate the applicability of the FDF and to provide resu
based on its implementation for LES of chemically react
turbulent flows. Only the FDF of scalar quantities is cons
ered; probability treatment of the subgrid velocity fluctu
tions is postponed for future work.

II. FORMULATION

We consider an incompressible~unit density!, isother-
mal, turbulent reacting flow involvingNs species. For the
mathematical description of this flow, the primary transp
variables are the velocity vectorui(x,t) ( i 51,2,3), the pres-
sure p(x,t), and the species’ mass fractionsfa(x,t) (a
51,2, . . . ,Ns). The equations which govern the transport
these variables in space (xi) and time (t) are

]ui

]xi
50, ~1!

]uj

]t
1

]uiuj

]xi
52

]p

]xj
1

]t i j

]xi
, ~2!

]fa

]t
1

]uifa

]xi
52

]Ji
a

]xi
1va , ~3!

whereva(x,t)[v̂a(F(x,t)) denotes the chemical reactio
term for speciesa, and F[@f1 ,f2 , . . . ,fNs

# denotes the
scalar array. Assuming a Newtonian flow with Fick’s law
diffusion, the viscous stress tensort i j and mass fluxJi

a are
represented by

t i j 5nS ]ui

]xj
1

]uj

]xi
D , Ji

a52G
]fa

]xi
, ~4!

wheren is the fluid viscosity andG is the diffusion coeffi-
cient,G5n/Sc, and Sc is the molecular Schmidt number

Large eddy simulation involves the use of the spa
filtering operation47

^ f ~x,t !&L5E
2`

1`

f ~x8,t !G ~x8,x!dx8, ~5!

whereG denotes the filter function,̂f (x,t)&L represents the
filtered value of the transport variablef (x,t), and f 85 f
2^ f &L denotes the fluctuations off from the filtered value.
We consider spatially and temporally invariant and localiz
filter functions, thus G (x8,x)[G(x82x) with the
properties,47 G(x)5G(2x), and *2`

` G(x)dx51. More-
over, we only consider ‘‘positive’’ filter functions as define
by Vermanet al.48 for which all the moments*2`

` xmG(x)dx
exist for m>0. The application of the filtering operation t
the transport equations yields
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]^ui&L

]xi
50, ~6!

]^uj&L

]t
1

]^ui&L^uj&L

]xi
52

]^p&L

]xj
1

]^t i j &L

]xi
2

]Ti j

]xi
, ~7!

]^fa&L

]t
1

]^ui&L^fa&L

]xi
52

]^Ji
a&L

]xi
2

]Mi
a

]xi
1^va&L ,

~8!

where Ti j 5^uiuj&L2^ui&L^uj&L and Mi
a5^uifa&L

2^ui&L^fa&L denote the subgrid stress and the subgrid m
flux, respectively.

III. CLOSURE STRATEGY

In LES of non-reacting flows the closure problem is a
sociated with3 Ti j 5^uiuj&L2^ui&L^uj&L and Mi

a5^uifa&L

2^ui&L^fa&L . In reacting flows, an additional model is re
quired for^va&L . Here, modeling of̂ va&L is the subject of
the probability formulation as described in the next secti
For the former two, we make use of currently available c
sures which are well-established in non-reacting flows. T
subgrid stress is modeled via

Ti j 2~d i j /3!Tkk522n t^Si j &L , ~9!

where^Si j &L is the resolved strain rate tensor andn t is the
subgrid viscosity. We use two closures to represent this
cosity. The first is the same as that in the conventional S
gorinsky closure3

n t5CsDG
2 A^Si j &L^Si j &L, ~10!

whereDG is the filter size andCs is an empirical constant
The drawbacks of this closure are well-recognized.49,50 In an
attempt to overcome some of these drawbacks, we also m
use of a second closure in which the subgrid viscosity
determined based on the modified subgrid kinetic energy

n t5CkDGAu^ui* &L^ui* &L2^^ui* &L&L8^^ui* &L&L8u, ~11!

whereui* 5ui2Ui and Ui is a reference velocity in thexi

direction. The subscriptL8 denotes the filter at the seconda
level which has a characteristic size~denoted byDG8! larger
than that of grid level filter. This model is essentially a mod
fied version of that proposed by Bardinaet al.,51 which uti-
lize equal sizes for the grid and secondary filters. We refe
this as the modified kinetic energy viscosity~MKEV ! clo-
sure.

A similar model is used for the closure of the subgr
mass fluxes52

Mi
a52G t

]^fa&L

]xi
, ~12!

whereG t5n t /Sct , and Sct is the subgrid Schmidt numbe
and is assumed constant.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



la

n

-

ce

n

y
t
lar

e

suf-

rm

ndi-
-

use-

ilar

ion
nd

ical

ight
cale
rep-

F.

501Phys. Fluids, Vol. 10, No. 2, February 1998 Colucci et al.
IV. FILTERED DENSITY FUNCTION „FDF…

The key point in this formulation is to consider the sca
fluctuations of the underlying scalars’ arrayF(x,t) in a
probabilistic manner. For that, we define the ‘‘filtered de
sity function’’ ~FDF!, denoted byPL , as16

PL~C;x,t ![E
2`

1`

%@C,F~x8,t !#G~x82x!dx8, ~13!

%@C,F~x,t !#5d@C2F~x,t !#[ )
a51

Ns

d@ca2fa~x,t !#,

~14!

whered denotes the delta function andC denotes the com
position domain of the scalar array. The term%@F2C~x,t!#
is the ‘‘fine-grained’’ density,39,40 and Eq.~13! implies that
the FDF is thespatially filtered value of the fine-grained
density. Thus,PL gives the density in the composition spa
of the fluid aroundx weighted by the filterG. With the
condition of a positive filter kernel,48 PL has all the proper-
ties of the PDF.40

For further developments, it is useful to define the ‘‘co
ditional filtered value’’ of the variableQ(x,t) by

^Q~x,t !uC&L[
*2`

1`Q~x8,t !%@C,F~x8,t !#G~x82x!dx8

PL~C;x,t !
,

~15!

where^aub&L denotes the filtered value ofa conditioned on
b. Equation~15! implies

~i! For Q~x,t !5c, ^Q~x,t !uC&L5c, ~16!

~ii ! For Q~x,t ![Q̂~F~x,t !!, ^Q~x,t !uC&L5Q̂~C!, ~17!

~iii ! Integral property: ^Q~x,t !&L

5E
2`

1`

^Q~x,t !uC&LPL~C;x,t !dC, ~18!

wherec is a constant, andQ̂(F(x,t))[Q(x,t) denotes the
case where the variableQ can be completely described b
the compositional variableF(x,t). From these properties i
follows that the filtered value of any function of the sca
variables~such as the reaction rate! is obtained by integration
over the composition space

^Q~x,t !&L5E
2`

1`

Q̂~C!PL~C;x,t !dC. ~19!

To develop a transport equation for the FDF, the tim
derivative of Eq.~13! is considered

]PL~C;x,t !

]t
52E

2`

` ]fa~x8,t !

]t

]%@C,F~x8,t !#

]ca

3G~x82x!dx8

52
]

]ca
E

2`

` ]fa~x8,t !

]t

3%@C,F~x8,t !#G~x82x!dx8, ~20!
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where the summation convention applies to the species
fix, a. This combined with Eq.~15! yields

]PL~C;x,t !

]t
52

]

]ca
F K ]fa

]t UCL
L

PL~C;x,t !G . ~21!

Substituting Eq.~3! into Eq. ~21! yields

]PL~C;x,t !

]t
5

]

]ca
H F K ]uifa

]xi
UCL

L

1K ]Ji
a

]xi
UCL

L

2^v̂a~F!uC&LGPL~C;x,t !J ~22!

in which the convective term can be represented in the fo

]

]Ca
F K ]uifa

]xi
UCL

L

PL~C;x,t !G
52

]^ui uC&LPL~C;x,t !

]xi
. ~23!

The unclosed nature of convection is denoted by the co
tional filtered value of the velocity which is further decom
posed into resolved and subgrid scale components. It is
ful to adopt the decomposition

^ui uC&LPL5^ui&LPL1@^ui uC&L2^ui&L#PL , ~24!

so that Eq.~21! can be expressed as

]PL

]t
1

]^ui&LPL

]xi
52

]@^ui uC&L2^ui&L#PL

]xi

1
]

]ca
F K ]Ji

a

]xi
UCL

L

PLG
2

]@v̂a~C!PL#

]ca
. ~25!

This is an exact transport equation for the FDF and is sim
to that presented by Gao and O’Brien.46 The last term on the
right hand side of this equation is due to chemical react
and is in a closed form. The second term on the left ha
side represents the filtered convection of the FDF in phys
space and is also closed~provided^ui&L is known!. The un-
closed terms are associated with the first term on the r
hand side denoting the effects of unresolved subgrid s
convection, and the second term on the right hand side
resenting the influence of molecular diffusion.

The subgrid convective flux is modeled via

@^ui uC&L2^ui&L#PL52G t

]PL

]xi
. ~26!

The advantage of the decomposition~Eq. ~24!! and the sub-
sequent model~Eq. ~26!! is that they yield results similar to
that in conventional LES for the first moment of the FD
The first moments corresponding to Eqs.~24! and ~26! are

^uifa&L5^ui&L^fa&L1@^uifa&L2^ui&L^fa&L#, ~27!

@^uifa&L2^ui&L^fa&L#52G t

]^fa&L

]xi
, ~28!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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respectively. The term in brackets in Eq.~27! is the general-
ized scalar flux in the form considered in conventional L
~Ref. 14! as pointed out by Gao and O’Brien.46 Conse-
quently, Eq.~28! becomes identical to Eq.~12!.

The closure for the conditional subgrid diffusion is bas
on the linear mean square estimation~LMSE! ~Refs. 39, 53!
model, which is also known as the IEM~Ref. 54! ~interaction
by exchange with the mean! closure. The model involves th
decomposition of the diffusion term in Eq.~25!,

]

]ca
F K 2

]

]xi
S G

]fa

]xi
D UCL

L

PLG
5

]

]xi
S G

]PL

]xi
D2

]2

]ca]cb
F K G

]fa

]xi

]fb

]xi
UCL

L

PLG .

~29!

The first term on the right hand side of this equation deno
the effects of molecular diffusion in spatial transport of t
FDF. The second term represents the dissipative natur
subgrid scalar mixing. The LMSE model suggests

]2

]ca]cb
F K G

]fa

]xi

]fb

]xi
UCL

L

PLG
52

]

]ca
@Vm~ca2^fa&L!PL#, ~30!

whereVm is the ‘‘frequency of mixing within the subgrid’’
which is not knowna priori. Analogous to the procedures i
Reynolds averaged methods, this frequency can be relate
the subgrid diffusion coefficient and the filter length:Vm

5CV(G1G t)/DG
2 . The second moment of Eq.~30! provides

an expression for the total subgrid scalar dissipation

ea52G K ]f~a!

]xi

]f~a!

]xi
L

L

52Vm~^f~a!
2 &L2^f~a!&L

2!,

~31!

where subscripts in parentheses are excluded form the s
mation convention. With the closures given by Eqs.~26! and
~30!, the modeled FDF transport equation is

]PL

]t
1

]@^ui&LPL#

]xi
5

]

]xi
F ~G1G t!

]PL

]xi
G

1
]

]ca
@Vm~ca2^fa&L!PL#

2
]@v̂a~C!PL#

]ca
. ~32!

This equation may be integrated to obtain transport equat
for the SGS moments. The equation for the first subgrid m
ment, ^fa&L , and the generalized subgrid variance,sa

5^f (a)
2 &L2^f (a)&L

2 are

]^fa&L

]t
1

]^ui&L^fa&L

]xi
5

]

]xi
~G1G t!

]^fa&L

]xi
1^va&L ,

~33!
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]sa

]t
1

]^ui&Lsa

]xi
5

]

]xi
F ~G1G t!

]sa

]xi
G22Vmsa

12~G1G t!F]^f~a!&L

]xi

]^f~a!&L

]xi
G

12~^f~a!v~a!&L2^f~a!&L^v~a!&L!.

~34!

These equations are identical to those which can be der
by filtering Eq.~3! directly, and adopting Eqs.~12! and~31!
for the subgrid flux and dissipation. In such direct mome
closure formulation, however, the terms involving^va&L re-
main unclosed. It is observed that the modeled FDF equa
~Eq. ~32!! is similar in form to the standard modeled equ
tion for the joint PDF of composition.40

V. MONTE CARLO SOLUTION OF THE FDF

The solution of the FDF transport equation~Eq. ~32!!
provides all the statistical information pertaining to the sca
variable F(x,t). This equation can be solved most effe
tively via the Monte Carlo scheme. In PDF methods t
Monte Carlo schemes can be utilized in both Eulerian55 and
Lagrangian40,56contexts. Thus, it is expected that both of t
procedures can be potentially employed for the solution
the FDF. In the Eulerian Monte Carlo scheme, the FDF
represented by an ensemble of computational elements~or
particles! at ‘‘fixed’’ grid points. These elements are tran
ported in the ‘‘physical space’’ by the combined actions
resolved scale convection and diffusion~molecular and sub-
grid!. In addition, transport in the composition space occ
due to chemical reaction and subgrid mixing. Prior to th
work, the Eulerian Monte Carlo method was implement
Expectedly, the results were not encouraging. The major
ficulty with the Eulerian formulation lies in the numerica
implementation of the resolved scale convection. The
merical implementation via a first order accurate upwi
scheme was shown to produce excessive artificial diffus
errors. While such errors can be tolerated in PDF methods~at
least for some flows!, they degrade the LES results. In som
cases the numerical errors become significantly larger t
the subgrid and molecular diffusions.

A remedy for the problem noted above is to divor
from the Eulerian discretization and to invoke the Mon
Carlo solver in a ‘‘grid free’’ Lagrangian manner. The a
vantages of Lagrangian numerical methods in reducing
amount of numerical diffusion are well-recognized.57–62The
basis of the Lagrangian solution of the FDF transport eq
tion relies upon the principle ofequivalent systems.40,56 Two
systems with different instantaneous behaviors may h
identical statistics and satisfy the same FDF transport eq
tion. In the Lagrangian Monte Carlo procedure each of
particles obeys certain equations which govern its transp
These particles undergo motion in the physical space by c
vection due to the filtered mean flow velocity, and diffusio
due to molecular and subgrid diffusivities. The general d
fusion process is represented in a stochastic manner by
following stochastic differential equation~SDE! ~Refs. 40,
63, 64!,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dXi~ t !5Di~X~ t !,t !dt1E~X~ t !,t !dWi~ t !, ~35!

whereXi is the Lagrangian position of a stochastic partic
Di andE are known as the ‘‘drift’’ and ‘‘diffusion’’ coeffi-
cients, respectively, andWi denotes the Wiener-Le´vy
process.65 A comparison of the Fokker-Plank equation co
responding to Eq.~35! with the FDF transport equation~32!
determines the appropriate specification of the coefficient
be

E[A2~G1G t!, Di[^ui&L1
]~G1G t!

]xi
. ~36!

Thus the SDE which represents the spatial transport of
FDF is

dXi~ t !5F ^ui&L1
]~G1G t!

]xi
Gdt1@2~G1G t!#

1/2dWi .

~37!

The compositional makeup of the particles evolves simu
neously due to the actions of subgrid mixing and reactio

dfa
1

dt
52Vm~fa

12^fa&L!1va , ~38!

wherefa
15fa(Xi(t),t) denotes the scalar value of the pa

ticle with the Lagrangian position vectorXi .
In the numerical implementation, the FDF is represen

by an ensemble of Monte Carlo particles, each with a se
scalarsfa

(n)(X(n)(t),t) and Lagrangian position vectorX(n).
Numerically, a splitting operation is employed in which th
transport in the physical and the compositional domains
treated separately. The simplest means of simulating Eq.~37!
is via the Euler-Maruyamma approximation66

Xi
n~ tk11!5Xi

n~ tk!1Di
n~ tk!Dt1En~ tk!~Dt !1/2j i

n~ tk!,
~39!

where Di
n(tk)5Di(X

(n)(tk),t), En(tk)5E(X(n)(tk),t) and
j i

(n) is a random variable with the standard Gaussian P
This formulation preserves the Markovian character of
diffusion process67–69 and facilitates affordable computa
tions. Higher order numerical schemes for solving Eq.~37!
are available,66 but one must be cautious in using them f
LES since the diffusion term in Eq.~35! depends on the
stochastic processX(t). The numerical scheme must pr
serve the Itoˆ-Gikhman70,71 nature of the process. The coeffi
cientsDi andE require the input of the filtered mean velo
ity and the diffusivity~molecular and subgrid eddy!. These
are provided by the solution of Eqs.~6!–~12! by a finite
difference LES~as described below! on a fixed grid and then
interpolated to the particle location.

The compositional values are subject to change du
subgrid mixing and chemical reaction. Equation~38! may be
integrated numerically to simulate these effects simu
neously. Alternately, this equation is treated in a split m
ner. This provides an analytical expression for the subg
mixing. Subsequently, the influence of chemical reaction
determined by evaluating the fine grained reaction ratesva

n

and modifying the composition of the elements. The imp
mentation of the SGS mixing and chemical reaction requ
the filtered mean values of the scalars. These mean va
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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~and other higher moments of the FDF! at a given point are
estimated by consideration of particles within some volu
centered at the point of interest. Effectively, this finite vo
ume constitutes an ‘‘ensemble domain’’ characterized by
length scaleDE ~not to be confused withDG! in which the
FDF is represented discretely by stochastic particles. Thi
necessary as, with probability one, no particles will coinc
with the point as considered.56 Here, a box of sizeDE is used
to construct the ensemble mean values at the finite differe
nodes. These values are then interpolated to the particle
sitions. Since the mixing model only requires the input of t
filtered scalar value, and not its derivative, this volume a
eraging procedure is sufficient. However, from the numeri
standpoint, determination of the size of the ensemble dom
is an important issue. Ideally, it is desired to obtain the s
tistics from the Monte Carlo solution when the size
sample domain is infinitely small~i.e., DE→0! and the num-
ber of particles within this domain is infinitely large. With
finite number of particles, ifDE is small there may not be
enough particles to construct the statistics. A larger ensem
domain decreases the statistical error, but may increase
dispersion error which manifests itself in ‘‘artificially dif
fused’’ statistical results. This compromise between the s
tistical accuracy and dispersive accuracy as pertaining to
grangian Monte Carlo schemes implies that the optim
magnitude ofDE cannot, in general, be specifieda priori.40

This does not diminish the capability of the procedure, b
exemplifies the importance of the parameters which gov
the statistics.

The LES of the hydrodynamic variables, which also d
termines the subgrid viscosity and scalar diffusion coe
cients, is conducted with the ‘‘compact parameter’’ fini
difference scheme of Carpenter.72 This is a variant of the
McCormack73 scheme in which a fourth order compact d
ferences are used to approximate the spatial derivatives,
a second order symmetric predictor-corrector sequenc
employed for time discretization. The computational sche
is based on a hyperbolic solver which considers a fully co
pressible flow. Here, the simulations are conducted wit
low Mach number (M'0.3) to minimize compressibility ef-
fects. The procedure involved in the finite difference discre
zation is independent of the Monte Carlo solver, thus alt
native differencing schemes can be used if desired. All
finite difference operations are conducted on fixed a
equally sized grid points. The transfer of information fro
these points to the locations of the Monte Carlo particles
conducted via interpolation. Both fourth-order and seco
order ~bilinear! interpolation schemes were considered, b
no significant differences in SGS statistics were observ
The results presented in the next section are based on s
lations with fourth- and second-order interpolations in tw
dimensional~2D! and 3D flows, respectively.

VI. RESULTS

A. Flows simulated

To demonstrate the effectiveness of the FDF method
this section simulation results are presented of a tempor
developing mixing layer and a spatially developing plan
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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jet. Both non-reacting and reacting flows are considered
the latter, a simple reaction of the typeA1B→P is con-
sidered in which the reaction is assumed to be constant
and non-heat releasing~isothermal flow!. Therefore,vA

5vB52KAB, whereK is a constant andA,B denote the
mass fractions of speciesA, B, respectively. The specie
A, B, P are assumed thermodynamically identical and
fluid is assumed to be calorically perfect. Both 2D and
simulations are conducted of the temporal mixing layer. T
jet simulations are 2D.

The temporal mixing layer consists of two coflowin
streams traveling in opposite directions with the sa
speed.74–77 The reactantsA and B are introduced into the
top and the bottom streams, respectively. In the planar
the reactantA is injected with a high velocity from a jet o
width D into a coflowing stream with a lower velocity ca
rying reactantB.76,78 Both these flows are dominated b
large scale coherent structures. The formation of these s
tures are expedited by imposing low amplitude perturbatio
In the figures presented below,x,y correspond to the stream
wise and cross-stream directions, respectively. In 3D,z de-
notes the spanwise direction. In the temporal mixing lay
the length in the streamwise direction is chosen to be tw
the wavelength of the most unstable mode to allow for
rollup of two large vortices and one~subsequent! pairing of
these vortices. In 3D, the lengths in the streamwise and
cross-stream directions are the same as those in 2D.
length in the spanwise direction is 60% of that in the strea
wise direction. The forcing is imposed in such a way
provide significant 3D transport.79,80The initial values of the
mass fractions of reactantsA andB at each of the spanwis
points in 3D are identical to those in 2D. The size of t
domain in the jet flow is 0<x<14D, 23.5D<y<3.5D.
The velocity ratio of the coflowing stream to that of the in
jet is kept fixed at 0.5.

Both flows are simulated via both DNS and LES. T
procedure in DNS is exclusively based on the fini
difference solution of Eqs.~1!–~4! in which there are suffi-
cient grid points to resolve the flow without a need for su
grid closures. The procedure in LES is based on the Mo
Carlo solution of the modeled FDF transport equation~Eq.
~32!! for the scalars augmented by the finite difference so
tion of the modeled equations of the filtered hydrodynam
variables~Eqs.~6!–~7!!. In the presentation below, these r
sults are identified by the abbreviation FDF. In addition, a
other LES is conducted in which the modeled transport eq
tions for the filtered scalar and the generalized subg
variance are simulated with the finite difference scheme
these simulations, the hydrodynamic solver and the mo
for the subgrid stresses and mass fluxes are identical to t
employed in FDF, but the effects of SGS fluctuations in
filtered reaction rate are ignored. Effectively, Eqs.~33!–~34!
are solved with the assumption^va(F)&L5va(^F&L). The
results based on this procedure are referred to as LES
~The approximation̂va(F)&L5^va(^F&L)&L was also con-
sidered but did not show an improvement over LES-FD.!

In both FDF and LES-FD simulations, the subgr
stresses are modeled via the Smagorinsky closure~Eqs.~9!–
~10!! and the MKEV model~Eq. ~11!!. The subgrid mass
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fluxes are modeled via Eq.~12!. No attempt is made here t
determine the magnitudes of the constants appearing in t
models in a dynamic manner.14 However, several differen
values are considered forCs andCk . The values which give
the best overall agreement with DNS in non-reacting flo
areCs50.014, 0.01 andCk50.02, 0.013, in 2D, 3D, respec
tively. These values are subsequently used in FDF
LES-FD of scalar quantities in reacting flows. This para
eterization is justified since the LES of the hydrodynam
field is not the subject of our FDF closure. The other para
eters Sc51, Sct50.7 are kept fixed. In the MKEV model
the ratio of the filter size at the secondary level to that at
grid level is DG8 /DG53. In the implementation of the
MKEV in the shear flows as considered, the magnitude
the reference velocityUi is set to zero in the cross-strea
direction and to the average of the high and low spe
streams in the streamwise direction. The subgrid mix
model requires the input of the constantCV in the mixing
frequency which also determines the SGS variances. As
be shown belowCV'3 is suggested, but the influence
this parameter is also studied by considering otherCV val-
ues.

The flow variables are normalized with respect to ref
ence quantities denoted by the subscriptr . In the temporal
mixing layer the reference quantities are the freestream
ues and the lengthLr is defined such that (dv0 /Lr)52.83,
wheredv0 is the initial vorticity thickness. In the planar je
Lr5D and the reference quantities are those at the h
speed jet stream. The reference quantities define the R
nolds number Re5 (UrLr /n). For the temporal mixing layer
the Reynolds number based on the total velocity differe
across the layer (DU52Ur) is given by Redv0

55.66 Re. The
reaction rate is parameterized by the Damko¨hler number
Da5K/(Ur /Lr). The non-dimensional time is given byt*
5(Urt/Lr). In the presentations below, the asterisk
dropped.

B. Numerical specifications

The magnitude of the flow parameters considered in
simulations are dictated by the resolution which can be
forded by DNS. The primary parameters are the flow R
nolds number~Re!, the Damko¨hler number~Da! and the mo-
lecular Schmidt number. All finite difference simulations~in
both DNS and LES! are conducted on equally-spaced, squ
(Dx5Dy5Dz (for 3D)5D) grids. Since the size of the
computational domain is fixed, the number~and the size! of
the grids depends on type of simulation being conduct
The highest resolution in DNS of the 2D temporal mixin
layer consists of 4333577 grid points which allows reliable
DNS with Re5500 and Da52 ~based on the velocity differ-
ence and the vorticity thickness at the initial time!. The DNS
of the 3D temporal mixing layer is conducted on 2173289
3133 grid points with Re5400, Da51. The resolution in
DNS of the planar jet consists of 7213361 grid points and
allows accurate simulations with Re512 000 and Da52
~based on the centerline velocity at the inlet and the
width!.

The FDF and LES-FD are conducted on grids coar
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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than those in DNS. Unless otherwise specified, the LES re
lutions in the mixing layer consist of 37349 grid points in
2D, and 55373334 grid points in 3D. For the planar jet,
resolution of 101351 is used for nonreacting flow simula
tions with Re55000, while a 181391 grid is utilized for
reactive flow simulations with Da52 and Re512 000. A
top-hat filter function47 of the form below is used

G~x82x!5)
i 51

ND

G̃~xi82xi !,

~40!

G̃~xi82xi !5H 1

DG
uxi82xi u<

DG

2

0 uxi82xi u.
DG

2

in which ND denotes the number of dimensions, andDG

52D. No attempt is made to investigate the sensitivity
the results to the filter function48 or the size of the filter.81

In FDF, the Monte Carlo particles are distributed at
50 throughout the domain. In the temporal mixing layer, t
particles are distributed evenly throughout the whole com
tational region. In the FDF of the jet, the particles are s
plied initially in the inlet region21.75D<y<1.75D. In all
the simulations, the particle density is monitored at all tim
to ensure an approximately uniform distribution througho
the mixing regions. In the temporal mixing layer, due to flo
periodicity in the streamwise direction, if the particle leav
the domain at the right or the left boundary, new particles
introduced at the other boundary with the same comp
tional values. A similar procedure is employed in the sp
wise direction in 3D simulations. Due to mirror symmetry
the upper and lower boundaries, particles that exit the to
bottom boundaries return to the domain at the oppo
boundary with the mass fractions values associated withA

andB interchanged. In the spatial jet, new particles are
troduced at the inlet at a rate proportional to the local fl
velocity and with a compositional makeup dependent on
y coordinate. The density of the Monte Carlo particles
determined by the initial number of particles per grid c
~NPG! of dimensionD3D ~3D in 3D!. The magnitude of
NPG is varied to assess its affect on statistical converge
of the Monte Carlo results. This assessment is demonstr
in 2D simulations of the temporal mixing layer. The simul
tions of 3D temporal layer and the spatial jet are based
NPG520. The size of the ‘‘ensemble domain’’ in the FD
simulations is also varied to assess its influence on the
tistical convergence. The following sizes are consider
DE52D,D,D/2. The number of samples used to constr
the FDF is thus controlled by the values of NPG andDE .

An additional parameter which influences the numeri
accuracy is the magnitude of the incremental time step.
stability criterion for the finite difference scheme require72

CFL<1/) and is more stringent than the criterion for th
Fourier number. The effect of the time increment on t
accuracy of the Euler-Maruyamma scheme is also con
ered. This is assessed by considering severalDt values~CFL
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numbers!. In the context of Itoˆ calculus,82,83 this issue is
considered by analysis of moments of the FDF up to
second order.

The simulated results are analyzed both ‘‘instan
neously’’ and ‘‘statistically.’’ In the former, the instanta
neous contours~snap-shots! of the scalar values are consid
ered. In the latter, the ‘‘Reynolds-averaged’’ statisti
constructed from the instantaneous data are considered
the spatially developing jet flow this averaging procedure
conducted via sampling in time. In the temporal mixin
layer, the flow is homogeneous inx ~andz in 3D!; thus the
statistics are generated by constructing the ensemble from
the grid points in the streamwise~and spanwise! directions.
These statistics arey2t dependent. All Reynolds average
results are denoted by an overbar.

C. Consistency of FDF and convergence of the Monte
Carlo procedure

The objective in the results presented in this subsec
is to demonstrate the consistency of the FDF formulation
the convergence of the Monte Carlo simulations. For t
purpose, the LES results via FDF and LES-FD are compa
against each other in shear flows under different conditio
In non-reacting flows, any deviations between the FDF a
LES-FD results are attributed to the differences in the
merical procedures. Since the accuracy of the finite diff
ence procedure is well-established, this comparative ana
provides a good means of assessing the performance o
Monte Carlo solution of the FDF. Unless specified oth
wise, the Smagorinsky model is used to evaluate the e
viscosity in the simulations considered in this subsection

In Fig. 1, results are presented of the LES of the no
reacting temporally developing mixing layer. Shown in t
figure are the contour plots of̂A&L via ~a! FDF and ~b!
LES-FD, with A50, 1 on the bottom and top streams, r
spectively. These contours correspond to results at a t
when the flow has experienced the pairing of two neighb
ing vortices. This figure provides a simple visual demonst
tion of the consistency of the FDF as the results via
particle method are in agreement with those obtained
LES-FD. In fact, the Monte Carlo results are somewhat m

FIG. 1. 2D mixing layer simulation results: Contours of the filtered co
served scalar.~a! FDF and~b! LES-FD.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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attractive due the Lagrangian nature of the solution pro
dure. While the LES-FD results display slight over- a
under-shoots, there are no such errors in the Monte C
scheme.

A more rigorous means of assessing the FDF result
via consideration of the Reynolds averaged results. Figur
and 3 show such results in the non-reacting temporal mix
layer in which the sensitivity of the FDF predictions to se
eral parameters is assessed. Figure 2~a! shows the compari-
son of FDF and LES-FD results for^A&L for several values
of DE . It is shown that the first filtered moment of the FD
agrees very well with that obtained by LES-FD, even
large DE values. The differences between the FDF a
LES-FD results are more apparent in Figs. 2~b,c,d! where the
cross-stream variations ofsA are shown for several values o
DE and CV and for different LES grid resolutions. As ex
pected, Figs. 2~b,c! show that with increasingCV , the mag-
nitude of the variance decreases. These figures also ind
that the difference between FDF and LES-FD predictio
diminish asDE decreases. This is also corroborated in F
2~d! in which the both FDF and LES-FD are conducted
61381 grid points. At allDE values, the agreement betwee
FDF and LES-FD is better than those shown in Fig. 2~b!
with a lower finite difference resolution. The consistency
the FDF and LES-FD results does not mean that the ma
tude of CV can be specified. HereinafterCV53 is adopted
since it provides the best overall match with DNS data
shown in the next subsection.

The other parameters which influence the accuracy
the Monte Carlo results are the number of Monte Carlo p
ticles per grid cell~NPG! and the magnitude of the incre
mental time step. Figure 3~a! shows thatsA values do not
vary significantly for NPG.50. In fact in other cases eve
smaller NPG values can be used as will be shown. Fig
3~b! verifies the insensitivity of statistics toDt as long as the
stability criterion is satisfied (CFL<1/)). Hereinafter,
CFL50.5 is used.

The sensitivity of the results to NPG andDE in the FDF
simulations of a reacting temporal mixing layer with Da52
is studied in Fig. 4. In these simulations, the MKEV mode
adopted to evaluate the subgrid viscosity because it perfo
somewhat better than the Smagorinsky model for LES
reactive flows~as assessed by DNS data in the next subs
tion!. Shown in the figure are the Reynolds averaged val
of the filtered product mass fraction (^P&L) at a fixed time
~Fig. 4~a!! and the integrated total product (dP(t)
5*^P&L(y,t)dy). The convergence of Monte Carlo solutio
and the independence to NPG andDE are demonstrated b
these results~at least for this first moment!. Moreover, it is
shown that while the mean value of the scalar as used in
mixing model for a given particle should be evaluated at
particle location, the mean value at the nearest finite dif
ence grid point could also be substituted. This eliminates
need for interpolating the mean scalar field to the part
locations.

The consistency and the convergence of the Monte C
simulation of the FDF in the nonreacting jet flow are su
marized in Figs. 5–6 in which the time averaged~Reynolds!
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FIG. 2. 2D mixing layer simulation results:~a! Conserved scalar distribution
vs. the cross-stream coordinate. Generalized variance vs. cross-stream
dinate at~b! CV51 and ~c! CV53. ~d! Same as~b! but with increased
resolution.
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FIG. 3. 2D mixing layer simulation results:~a! Cross-stream variation of the
generalized variance for various NPG.~b! Generalized variance vs. cross
stream coordinate at various CFL numbers.

FIG. 4. 2D mixing layer simulation results:~a! Cross-stream variation of the
product mass fraction.~b! Total product vs. time. The long-dashed lin
represent the case where the mean value of the scalar in the mixing m
for a particle is set to be equal to the value at the nearest finite differe
grid point.
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
statistics for the first and second subgrid moments ofA are
presented. Similar to the temporal mixing layer results, F
5 shows the accuracy of the Monte Carlo solver and
insensitivity of results toDE for the first moment of the FDF
Similarly, for the scalar variance, the agreement between
FDF and LES-FD results diminishes as the size ofDE is
decreased. Atx55D, the FDF results withDE5D are very
close to those via LES-FD. With the sameDE values the
agreement is not as good atx59D and lower values ofDE

are needed to achieve a better agreement for the sub
variance. However, as will be shown below, with this res

del
ce

FIG. 5. 2D planar jet results: Conserved scalar distribution vs. cross-str
coordinate atx55D, 9D.

FIG. 6. 2D planar jet results: Generalized variance vs. cross-stream co
nate at~a! x55D and ~b! x59D.
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lution the mean filtered values of reacting scalars are p
dicted reasonably well.

The consistency of the FDF simulation in 3D is demo
strated in Fig. 7 in which the scatter plot is shown of t
instantaneous filteredA values as obtained by FDF vs. tho
via LES-FD. The hydrodynamic LES is based on MKEV
both simulations. The correlation coefficient between
data obtained by the two simulations is 0.99. This excell
correlation is also reflected in the cross stream profiles of
Reynolds-averaged filtered quantities in Fig. 8.

D. DNS validations of the FDF

The objective in this section is to assess the overall p
formance of the FDF and to appraise the validity of the s
models employed in the FDF transport equation. For t
objective, the FDF results are compared against DNS of
same flow configuration with the same magnitudes of Re
Da. For a meaningful comparison, the DNS data are filte
and the results on the coarse grids are compared with t
on the corresponding coarse grids in the FDF simulations
illustrate the capability of the FDF, the results are also co
pared with LES-FD in which the effects of SGS fluctuatio
on the filtered reaction rate are ignored.

FIG. 7. 3D mixing layer simulation results: Scatter plot of the filtered valu
of a conserved scalar as obtained by FDF vs. those via LES-FD.

FIG. 8. 3D mixing layer simulation results: Cross-stream variations of
mean value of the filtered mass fraction of a conserved scalar.
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First the resolution requirement for DNS is determine
This is demonstrated here for the 2D mixing layer. A simi
procedure is followed for the other flow configurations.
Fig. 9 results are presented of the temporal evolution of
vorticity thickness (dv) and the total product (dP) in a react-
ing layer with Re5500, Da52 at several resolutions. It is
shown that the results generated via 2893385 are almost
identical to those on 4333577 grid points. Analysis of othe
statistical results~not shown! show a similar behavior. Here
inafter 4333577 grid points are used in all DNS of the 2
mixing layer. The resolution employed in LES~both FDF

s

e

FIG. 9. 2D mixing layer simulation results: Effect of grid resolution o
temporal evolution of the~a! vorticity thickness and~b! total product.

FIG. 10. 2D mixing layer simulation results: The integrated Reynolds av
aged values of the filtered scalar’s variance vs. time.
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and LES-FD! is coarser consisting of 37349 grid points.
The results in Fig. 9 indicate the inaccuracy of ‘‘DNS’’ a
this resolution.

To determine the magnitude ofCV , in Fig. 10 the inte-
grated Reynolds averaged values of the SGS varia
(*sA(y,t)dy) of a nonreacting scalar as predicted by FD
are compared with those via DNS. This comparison sho
that CV'3 yields a reasonable agreement between the
diction and DNS results. Thus, this value is used in abse
of a better model of the subgrid mixing frequency.

To demonstrate the difficulty of modeling the SGS sca
fluctuations in reacting flows, the Reynolds averaged profi
for the ‘‘SGS unmixedness’’ (tAB5^AB&L2^A&L^B&L) and
its ‘‘Reynolds’’ subpart84,85 RAB5^A8B8&L2^A8&L^B8&L as
obtained directly from DNS data are shown in Fig. 11. The
results show the importance~non-zero values! of these cor-
relations. They also show thatRAB is a fraction oftAB sug-
gesting that modeling oftAB in LES is more complex than
that in Reynolds procedures.

In Fig. 12, the FDF predictions of the total product a
compared with DNS results. The Smagorinsky model is e
ployed in FDF with several values of the parameterCs . Ob-
viously for a constantCs value, the agreement between DN
and FDF is not very satisfactory. The subgrid viscosity ba

FIG. 11. 2D mixing layer simulation results: Total SGS unmixedness a
Reynolds subpart vs. cross-stream coordinate.

FIG. 12. 2D mixing layer simulation results: Total product variation wi
time. The Smagorinsky model is used to represent the eddy viscosity fo
FDF simulations.
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on the Smagorinsky closure affects both the resolved hyd
dynamic field and the subgrid scalar mixing process. It
known that the Smagorinsky closure sometimes gener
excessive damping on the resolved scales in transitio
regions.49 Here, an attempt is made to rectify the situatio
albeit in a veryad hocmanner. In the temporal mixing late
Cs should be initially zero to reflect the fact that the flow
‘‘laminar.’’ Then its value should increase in time as th
flow becomes more ‘‘turbulent.’’ The FDF results in Fig. 1
with Cs}t agree more favorably with DNS. This is partl
due to better predictions of the hydrodynamic field~Fig. 13!
but also due to more accurate representation of the sub
mixing frequency. This better agreement is not sufficient
suggest a new model forCs ; rather it is to demonstrate th
importance of the subgrid diffusion in affecting the FDF d
rectly ~through the subgrid mixing! and indirectly~through
the input of the hydrodynamic parameters!.

In order to better predict the subgrid viscosity, th
MKEV model ~Eq. ~11!! is adopted. In Fig. 13 it is shown
that the vorticity thickness predicted by the MKEV mod
compares with DNS data better than that via the Smago
sky model. The improved prediction of the eddy viscos
also improves the FDF predicted product formation as sho
in Fig. 14 for several values of the Damko¨hler number. Due
to the demonstrated superiority, the MKEV closure is u
lized in all subsequent simulations unless otherwise note

d

he

FIG. 13. 2D mixing layer simulation results: Vorticity thickness vs. tim

FIG. 14. 2D mixing layer simulation results: Temporal evolution of the to
product.
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FIG. 15. 2D mixing layer simulation results:~a! Cross-stream variation o
the product distribution.~b! Temporal evolution of the total product.

FIG. 16. 2D mixing layer simulation results: Scatter plots of instantane
value of the conserved scalar vs. the mean value. Data taken from~a! DNS,
~b! FDF throughout the computational domain.
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
s

FIG. 17. 2D planar jet simulation results: Contours of the normalized
stantaneous subgrid unmixedness~a! DNS, ~b! FDF.

FIG. 18. 2D planar jet simulation results: Instantaneous reaction rat
determined by~a! DNS, ~b! FDF, ~c! LES-FD.
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To demonstrate the importance of the SGS scalar fl
tuations, the results of FDF and LES-FD are compared w
DNS results in Fig. 15. This figure shows that the neglec
SGS unmixedness results in significant overpredictions
the product mass fraction. This behavior is observed at
times and all values of the Damko¨hler number~Fig. 15~b!!
and is consistent with that in Reynolds averaging.18 More-
over, Fig. 15~b! shows that as the magnitude of th
Damköhler number increases, the neglect of the SGS unm
edness in LES-FD results in progressively higher deviat
of product formation relative to DNS. This is significa
since the Da values in practical reacting systems can be q

FIG. 20. 2D planar jet simulation results: Total product vs. the downstre
coordinate.

FIG. 19. 2D planar jet simulation results: Cross-stream variation of
mean product mass fraction at~a! x55D and ~b! x59D.
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large. Therefore it is expected that the effects of the S
unmixedness are very pronounced in such applications.
verify that the enhanced product formation in LES-FD is n
associated with the numerical discretization errors, an a
tional FDF is conducted in which the filtered reaction rate
‘‘incorrectly’’ calculated in terms of the filtered values of th
reactants’ mass fractions. The results based on this mode
identified by FDF* in Fig. 15~a! and consistent with LES-FD
results, overpredict the rate of reactants’ conversion.

It is useful to compare the DNS results for ‘‘fine grid
scalar values with the ‘‘fine-grained’’ values associated w
the Monte Carlo particles. The ‘‘scatter’’ plots of the insta
taneous fine grid values ofA vs. its filtered valuê A&L as
obtained by DNS are presented in Fig. 16~a! and the scatter
plot of fine grainedA values vs.̂ A&L is shown in Fig. 16~b!.
These results are associated with a non-reacting temp
mixing layer and are taken at a fixed time. The points in F
16~a! correspond to the values at all the grid points employ
in DNS within the computation domain. The points in Fi
16~b! correspond to all Monte Carlo particles occupying t
same domain. It is shown that the ‘‘density’’ of scatter
similar in the two plots indicating a qualitative agreeme
between FDF and DNS. However, the scatter in FDF is
pectedly somewhat greater but not with a significant dens

m

e

FIG. 21. 3D mixing layer simulation results: Cross-stream variation of
product distribution.

FIG. 22. 3D mixing layer simulation results: Temporal evolution of the to
product.
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The effectiveness of the FDF to predict the slightly mo
complex jet flow is summarized in Figs. 17–20. Figure
shows the instantaneous contours of the normalized SGS
mixedness as obtained by filtered DNS and FDF. Note
this term is assumed to be identically zero in LES-FD. T
SGS unmixedness is negative throughout the reaction z
thus its effect is manifested in a decrease of the filtered
action rate. This is readily observed in Fig. 18, where
contour plots of the reaction rates are displayed for the
tered DNS, FDF and LES-FD approaches. While the p
values in the DNS are slightly higher than those observe
the FDF simulations, the reaction zone predicted by the F
simulation is slightly thicker~due to the finite size of the
ensemble domain! therefore yielding a comparable amou
of converted products. In contrast, the filtered reaction ra
obtained by the finite difference LES procedure in which
SGS unmixedness is neglected are significantly higher. T
is reflected in Fig. 19, where the cross-stream variation of
time-averaged filtered values of the product mass fraction
presented at two downstream locations and in Fig. 20, wh
the streamwise variation of the integrated total prod
(dP(x)5*^P&L(x,y)dy) is shown. Two additional points
are intended by presentations of Figs. 19 and 20. First,
FDF results are compatible with those of DNS at all dow
stream coordinates. Therefore, there is no ‘‘secular’’ beh
ior associated with possible modeling errors in the FDF. S
ond, the differences between the FDF and DNS in predic
the subgrid scalar variances at largex/D values as observe
in the variance results in Fig. 6 do not seem to yield sign
cant differences in the amount of product formation as p
dicted by the FDF. In all the cases the neglect of the S
fluctuations, as done in LES-FD, results in significant ov
predictions of the filtered reactant conversion rate. It is
pected that these overpredictions would become even m
significant at higher Damko¨hler and Reynolds numbers.

The major conclusions drawn from the 2D results a
confirmed in 3D simulations. The cross-stream variation
the filtered mean products and the temporal variation of
total product in the 3D mixing layer are shown in Figs.
and 22. The performances of the Smagorinsky and MK

TABLE I. Total computational times for the 2D reacting mixing layer sim
lations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 4333577 — 285.45 14, 15~b!
FDF 37349 40 8.45 14

LES-FD 37349 — 1 15~b!

aUnit corresponds to 11 s on a Cray-C90.

TABLE II. Total computational times for the reacting jet simulations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 7213361 — 52.12 18~a!
FDF 181391 20 12.56 18~b!

LES-FD 181391 — 1 18~c!

aUnit corresponds to 809 s on a Cray-C90.
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closures in predicting the hydrodynamic field are similar
those in 2D. With either closures, the amount of produ
predicted by LES-FD is higher than those obtained by F
and DNS. The FDF results are again in a good agreem
with DNS data. This agreement also indicates that the m
ing model with CV53 works well in 3D simulations; no
attempt was made to find the optimize value of this consta
Future applications to other flow configurations would det
mine the generality of the model.

E. Comparison of computational requirements

The total computational times associated with some
the simulations are shown in Tables I–III. The cases con
ered in this table are those which give reasonably accu
predictions of the first FDF moments of the reacting sca
field. Expectedly, the overhead associated with the F
simulation is somewhat extensive as compared to LES-
nevertheless the FDF’s computational requirement is sign
cantly less that of DNS. While this overhead was tolerated
present simulations, there are several means of reducin
for future applications. A detailed examination of the ind
vidual routines utilized in the FDF simulations indicates th
the most demanding computation is associated with the
ticle interpolation procedure. The fourth order interpolati
routine consumes about 51.3% of the total CPU time. T
bilinear scheme reduces the computational time by 36%
interpolation can be totally disregarded, i.e., using the res
at the nearest finite difference grid point as shown in Fig
the CPU time can be decreased by 50%. In addition,
Lagrangian procedure would benefit from the utilization
parallel architecture, since a significant portion of the time
devoted to computations in large loops dimensioned by
total number of Monte Carlo particles. This has been d
cussed for use in PDF~Ref. 86! and its utilization is recom-
mended for FDF.

In comparing the computational requirements of FD
with those of DNS, it is important to note that this compa
son could be made only in flows for which DNS was po
sible. The DNS times and the FDF times are as close as
are simply because the DNS had to be done at low Re,
values. At higher values of these parameters, the differe
could be much greater. This warrants further extensions
applications of FDF for more complex turbulent reacti
flows for which DNS is not possible.

TABLE III. Total computational times for the 3D reacting mixing laye
simulations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 21732893133 – 182.71 21, 22
FDF 55373334 20 7.64 21, 22

LES-FD 55373334 – 1 21, 22

aUnit correspond to 655 s on a Cray-C90.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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VII. CONCLUDING REMARKS

It is demonstrated that the filtered density functi
~FDF! provides a powerful method for large eddy simulati
~LES! of turbulent reacting flows. The method is based
the representation of the distribution of the unresolved fl
tuations at the subgrid level. This is similar to the probabil
density function~PDF! methods in Reynolds averaging pr
cedures. Here, the FDF methodology is developed for tr
ment of scalar variables. Thus, similar to PDF method
represents the effects of chemical reactions in a closed fo

A modeled transport equation is developed for the F
by adopting a closure strategy similar to that in PDF me
ods. It is shown that the Lagrangian Monte Carlo sche
provides an effective means of solving the FDF transp
equation. The scheme is exploited for LES of two- and thr
dimensional shear flows under both nonreacting and reac
conditions. The simulated results are compared with th
based on conventional LES methods in which the effects
subgrid scalar fluctuations are ignored~LES-FD!, and those
via direct numerical simulation~DNS! of flows with identi-
cal values of the physical parameters. The convergenc
the Monte Carlo numerical results and the consistency of
FDF formulation are demonstrated by comparisons with
Eulerian results of LES-FD of non-reacting flows. The sup
riority of the FDF over LES-FD is demonstrated by detail
comparative assessments with DNS results of reacting s
flows. It shown that the subgrid scale scalar fluctuations h
a very significant influence on the filtered reaction rate;
neglect of these fluctuations results in overpredictions of
filtered reactant conversion rate.

Although the present methodology is developed for i
thermal, constant density, reacting flows with a simple kin
ics scheme, the extension to variable density flows, with e
thermic reactions imposes no serious mathemat
difficulties. With such an extension, it is conceivable th
LES of reactive flows with realistic chemical kinetics may
conducted for engineering applications in the near future
the computational overhead associated with the FDF ca
tolerated. In this regard, the scalar FDF methodology is
tractive in that the present Monte Carlo solver can be u
directly in available CFD codes. Similar to PDF methods,
closure problems associated with the FDF are the corr
tions involving the velocity field~such as SGS stresses a
mass fluxes!. This may be overcome by considering the jo
velocity-scalar FDF similar to that in PDF.87

The computational requirement for FDF is more th
that for LES-FD and less than that for DNS. The range
flow parameters~such as the Reynolds and the Damko¨hler
numbers! that can be considered by FDF is significan
larger than can be treated by DNS, and the results are m
accurate that those by LES-FD. This comparison of com
tational requirements could be made here only in flows
which DNS was possible, i.e., low Da, Re values. At high
values of these parameters, the computational cost assoc
with DNS would be exceedingly higher than that of FD
Thus for practical flows for which DNS is currently impo
sible, FDF would be a good alternative. Several means
reducing the FDF’s computational requirements are rec
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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mended. These could be useful in future applications in co
plex flows. The FDF methodology will benefit from ongoin
and future improvements in PDF schemes from both mod
ing and computational standpoints.56
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