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In this paper, we introduce an integrated PDF/neutral network approach for the simulation of turbulent
flames. The use of artificial neural network (ANN) to represent chemical reaction in turbulent flames offers
a significant reduction in the computer memory and run time demands over the classical methods, namely,
look-up tables and direct integration. The adequacy of the neural network model strongly depends on the
selection of the training set, which should be representative of the most accessible composition space. This
is essential for the network to give an accurate model of the chemistry.

A novel method known as statistical mapping is used to generate a training set for the neural network.
This is a small-scale presimulation of the flame to produce a set of samples that are representative of the
most accessible compositions during actual flame computations. In case of difficulties in achieving con-
vergence of the network, “histogram redistribution” technique is used to smooth the PDF of the input
samples. This technique is found to improve the convergence of network; however, its generality is yet to
be determined. The integrated PDF/ANN approach is demonstrated here for a piloted flame with simple

chemistry.

Introduction

The PDF/Monte Carlo approach for simulating
turbulent reacting systems offers the advantage of
representing the chemical source term in a closed
form [1,2]. However, the numerical implementation
of the chemistry using standard methods, namely,
look-up tables or direct integration (DI), imposes
severe limitations on the practical use of these ap-
proaches. These restrictions are dictated by the im-
mense memory allocation required by the look-up
tables approach and the prohibitive computation
time that is required to perform direct integration.
In both methods, the computational demands be-
come unrealistically large when more than, say, four
reactive species are necessary for representing the
chemical kinetics. In recent years, a number of
promising techniques have been developed to over-
come these limitations. These are the intrinsic low
dimensional manifolds (ILDM) [3,4,5], repro-mod-
eling [6,7], and artificial neural network (ANN) [8,9]
which is used in this study.

The use of artificial neural networks is emerging
as a promising, cost-effective alternative for repre-
senting chemical reactions in turbulent combustion
simulations [8]. It aims at producing a simplified ver-
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sion of the real system while retaining the same gen-
eral behavior. The main advantages of the neural
network approach are its capability to represent the
chemistry accurately and the huge saving in memory
storage and computational time, in comparison with
the look-up table and direct integration approaches.

One of the basic and important factors involved in
developing a neural network model is in generating
an appropriate training set that adequately repre-
sents the chemistry over the entire accessible do-
main of compositions and that can be trained with-
out major difficulties. This is often difficult to obtain.
The problem emerges because of the lack of a priori
knowledge about the most accessed domain of com-
position during the simulations. Current practice for
generating the input samples of the training set is to
determine the boundaries of the allowed composi-
tion space and to select samples evenly distributed
within this domain. This procedure is described in
detail elsewhere [10]. The changes in composition
caused by chemical reaction over a certain time in-
crement are computed and form the output samples
of the training set. The difficulty with this approach
is that the allowed space is often larger than the
space that is frequently accessed during the simu-
lation and the training set is not focused over this
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space. This leads to inaccuracies and difficulties in
obtaining adequate network convergence.

The purpose of this paper is to present an inte-
grated PDF/neural network approach to simulate
turbulent flames by solving the transport equation
for the joint PDF of velocity—composition—dissipa-
tion using the Monte Carlo technique. Once the fuel
and the chemistry are specified, small-scale PDF
simulations are first performed using direct integra-
tion to generate a training set for the neural network.
This approach is called statistical mapping. This set
is then used to train the network that is subsequently
used in the PDF simulation of flames for the same
fuel. If difficulty is encountered during the training
of the network, a procedure for manipulating the
training set that could ease convergence is pre-
sented. The validity of the approach is demonstrated
here for the piloted flame albeit using very simple
chemistry.

Integrated PDF/Neural Network Approach

The integration of the ANN and PDF approaches
is aimed at making the simulation of turbulent
flames using realistic chemistry as simple as possible
and with minimal intervention by the operator. The
procedure is described later and is shown schemat-
ically in Fig. 1. The approach consists of the follow-
ing steps:

* Chemistry: For a given fuel, an appropriately re-
duced chemical kinetics mechanism is selected
and the production rate of the reactive variables
that are adopted in the calculations is determined.

algorithm.

* Statistical Mapping: The training set for the ANN
is generated in two steps. First, small-scale PDF/
Monte Carlo presimulations are performed using
direct integration for the chemistry. This produces
a set of input samples that are used to generate a
set of composition increments over a given reac-
tion time. More details about this process are given
in the next section.

* ANN Training: Neural network training is then

carried out using the training set until an appro-
priate convergence of the algorithm is obtained. If
the network cannot be trained, then a histogram
redistribution technique is applied to the input
samples (this technique is described later) and the
training of the network is repeated.
Implementation: Once the network has converged
to a satisfactory level, the neural network model is
incorporated in the actual PDF simulation of tur-
bulent flames.

Statistical Mapping Approach

The statistical mapping approach involves per-
forming one or more small-scale PDF/Monte Carlo
presimulations of turbulent flames using the same
chemistry for which the training set is required.
Compositions accessed during the simulation pro-
vide a good and representative coverage of the ac-
cessible space, and these are stored forming the in-
put samples of the training set. In principle, those
samples represent a set of potentially reactive com-
positions but do not ensure that condition. The out-
put samples for the training set are then generated
for each input by direct integration over specified
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reaction time intervals. This approach is expected to
result in smoother training of the neural network in
terms of both convergence and accuracy. In addi-
tion, the size of the statistically mapped set is about
10% of the size of a set that would be used with the
look-up table approach.

A new version of the PDF code is used to solve
the transport equation for the joint PDF of velocity,
composition, and dissipation. The IEM (interaction
by exchange with the mean) model is used to rep-
resent molecular mixing. The new code is restricted
to two-dimensional flows and uses the particle-mesh
numerical method. A rectangular grid is used and
the mean properties are determined for each grid
point. The instantaneous properties are carried by
stochastic particles within each cell. Detailed chem-
ical kinetics has not yet been implemented into the
code and a very simple thermochemical model that
simulates one-step chemical reaction is used here.
The reaction rate is given as a function of two vari-
ables: mixture fraction &, and b, where b is a reaction
progress variable that varies between 0 and 1. The
stoichiometric mixture fraction is & = 0.5 and the
reactive limits extend from 0.3 to 0.7 in the mixture
fraction range. It should be noted here that although
this chemistry does not refer directly to any partic-
ular fuel, it could be related to a fuel mixture of Hy/
Nj where & is similar and the global chemistry may
be represented by a one-step reaction.

The pilot-stabilized burner [11], which consists of
a central fuel tube D; = 7.2 mm in diameter, sur-
rounded by an 18-mm annulus for the premixed
flame pilot, is used here. All computations are per-
formed for the following conditions: bulk jetvelocity,
@; = 41 m/s, burned pilot velocity, iy, = 24 m/s,
co-flow air velocity, @, = 15 m/s. The initial condi-
tions for the velocity and turbulence profiles are
identical to those specified earlier for similar jet

flames [12]. The values of mixture fraction at the exit
plane of the jet, pilot, and air streams are 1, &, and
0, respectively. The solution grid covers the region
from x/D; = 0 to 25 and #/R; = 0 to 10. The grid is
not uniform and has 31 X 21 nodes in the X-Y di-
rections. This is considered adequate for the pur-
pose of this paper. Further details about the PDF
code, the thermochemistry, and the solution proce-
dure may be found elsewhere [14].

Artificial Neural Network

A multilayer perceptron (MLP) architecture is
used for the neural network. The network’s topology
consists of two hidden layers with equal number of
neurons in each layer, as shown in Fig. 2. A back-
propagation supervised learning algorithm is
adopted [15,16]. To reduce the possibility of the net-
work being trapped in a suboptimal minimum and
to increase the convergence rate of the algorithm,
individual momentum terms and adaptive learning
rates adjustment are used for the weights and bias
matrices. A novel dynamic randomization procedure
[8] is also included to improve the convergence of
the algorithm. The network’s architecture, optimi-
zation, and performance are described in detail by
Christo et al. [8]. The convergence of the algorithm
is measured in terms of an average error function,
E,, defined as follows:

N K
&=§§WbWWNm (1)
i=1j=
where, y{? and dff) are, respectively, the actual net-
work model output and the desired output of sample
i (out of N training samples) for species j out of total
K reactive species.

The implementation of the neural network model
into the joint PDF code is carried out by modifying
the reaction routine to access a neural network
model routine for calculating the composition
changes. For a given reactive composition (&, I, i
= 1... Ny, the composition changes (Ar;,j =1

.. Ny) over a specific reaction time are obtained by
applying the neural network model according to the
following algorithm:
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where T is the specific molar abundance of species
i (l"j = Y/W,, Y,, W, are the mass fraction and mo-
lecular weight of species i, respectively); w and ¢
are, respectively, the weights matrices and bias vec-
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FIG. 3. Probability density function (PDF) of hydrogen radical specific molar abundance, in mixture fraction space for

(a) statistically mapped samples and (b) transformed samples (natural logarithm)

tors obtained from the converged algorithm of the
neural network; K;, K, are the number of neurons
in the first and second hidden layers, respectively.
Nj, Ny denote the number of input variables (num-
ber of reactive species plus one) and the number of
reactive species, respectively. The superscripts 1, 2,
and 3 in Egs. (2) through (4) refer to the location
before, within, and after the two hidden layers, re-
spectively, as shown in Fig. 2. For the cases in which
the chemistry is presented for multiple time inter-
vals, each interval is handled by a separate neural
model (i.e., different w and ¢ values). In the present
study, computations are performed using the follow-
ing values: K; = K, = 8, K = N; = 2 (¢ and I}),
N; = 1(4I}),and N = 1375 samples.

Histogram Redistribution

The chemistry used here is very simple and the
ANN has no difficulty in converging, regardless of
the sample distribution in the training set. However,
where more complex chemistry is used, the risk of
the algorithm being trapped in suboptimal local min-
ima increases. Detailed inspection of the training set
used indicated that the convergence of the algorithm
may depend on the nonuniformity in the distribution
of the input samples in scalar space. A typical ex-
ample is given in Fig. 3a for a highly skewed distri-
bution of samples for composition C, which may
cause a slowdown or total lack of network conver-
gence. A technique known as histogram redistribu-
tion is used to transform the distorted distribution
of the PDF into a more uniform one without altering
the composition of the samples. The histogram re-
distribution technique is a special case of a general

algorithm known as histogram equalization, which is
often used to the same effect in digital signal pro-
cessing and image enhancement applications [17].
The histogram redistribution technique is based on
using a nonlinear transformation to create a uni-
formly distributed PDF of the original samples. The
transformation should be a continuous single-value
function. Its specific form depends on the shape of
the PDF and the dynamic range of the original sam-
ples. A natural logarithmic function is used here for
the distribution shown in Fig. 3a and proved ade-
quate in achieving good equalization of the histo-
grams, as shown in Fig. 3b. The transformed set is
then used as a training set for the neural network. It
is found that applying histogram redistribution for
the input set seems to improve the convergence of
the neural network and produces error-function val-
ues that are smaller by a factor of 3 in comparison
to those obtained using nontransformed sets.

The histogram redistribution technique is used
whenever the neural network algorithm is not con-
verging. However, the success of the transformation
is not always guaranteed because this depends not
only of the distribution of the inputs but on the dis-
tribution of the outputs as well.

PDF/Neural Network Simulation

The ANN models are coupled to the PDF code
as plug-in modules. A range of reaction time incre-
ments may be used and should be selected to suit
the timescale of the problem under consideration
and to minimize interpolation error. Results are pre-
sented for the simple test case using ANN models
for two time increments. The ANN results are com-



PDF/NEURAL NETWORKS TURBULENT COMBUSTION SIMULATIONS 47

e
@
T

=4
o
T

Reactedness (b)
°
&
T

031

0.0 03 05 08 1.0 0.0 03 05 08 10
Mixture Fraction, § Mixture Fraction, &

FIG. 4. Scatter plots of reactedness b, against mixture
fraction &, across the physical space x/D; = 0-25, obtained
by using two different representations of the chemistry in
the PDF transport equation: (a) direct integration, (b) neu-
ral network.
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FIG. 5. Radial profiles of mean reactedness b, against
mixture fraction &, at different axial locations, obtained by
two different representations of the chemistry in the PDF
transport equation. Symbols: —— direct integration, Oneu-
ral network.

pared with those obtained using direct integration
for converged solutions obtained after 10,000 itera-
tions.

Figure 4 shows scatter plots of reactedness b, plot-
ted versus mixture fraction &, for the entire solution
domain (x/D; = 0-25, r/R; = 0-10). Results using
the ANN and DI methods are presented. The agree-
ment obtained is very good and is reinforced by the
radial profiles of mean reactedness shown in Fig. 5,
for #/D; = 10 and 20. The results demonstrate
clearly that ANN is providing an excellent represen-
tation of the chemistry. It should be noted, however,
that any error associated with the ANN will accu-

mulate over the large number of steps associated -

with the PDF simulations. It is important, therefore,
to keep this error to an absolute minimum, especially
in the general case of multistep chemistry.

The computational cost of calculating the chem-
istry using the ANN approach is ~20% of the total
CPU time of the PDF simulation, compared to ~4%
if the DI method is used. This percentage changes
depending on the number of time increments used
in the ANN approach and on the distribution of
these time intervals relative to characteristic time-
scales of the flow. The large computational require-
ment of the ANN approach is due to the use of only
single-step chemistry. It has been demonstrated ear-
lier [8] that the full potential of the ANN approach,
in terms of CPU and memory storage savings, is only
realized when multistep chemistry is used. The sim-
ple cases presented here only demonstrate the pro-
cedure of an integrated PDF/neural network
method and its feasibility.

Conclusions

An integrated approach coupling a neural network
for the representation of chemistry to the PDF sim-
ulation of turbulent combustion is presented here.
This approach is aimed at overcoming the difficulty
associated with extreme computer memory and run
time required for the classical look-up tables and di-
rect integration methods.

Statistical mapping is shown to be a superior
method for generating the training set for the net-
work. This requires little or no intervention by the
user and gives a better representation of the acces-
sible composition space. When difficulties of neural
network convergence arise because of the training
set, a histogram redistribution technique is applied
to smooth the PDF's of the compositions in the train-
ing set.

The feasibility of the approach is demonstrated
here using single-step chemistry. The full potential
of this approach, however, will be achieved with the
implementation of multistep chemistry in the PDF
simulations.
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COMMENTS

Katharina Kohse Héinghaus, Universitiit Bielefeld, Ger-
many. Your approach would be very valuable under con-
ditions where complex chemistry is important, as, e.g., in
pollutant formation. With your approach with two layers I
just fail to see how you would deal with situations in which
multi-channel reactions would be of great importance, as
e.g. in thermal DENO; type situations. How would the
method perform this critical switching between the differ-
ent pathways when you have more than one channel?

Author’s Reply. The neural network “learns” the chem-
istry as dictated by the chemical kinetic mechanism and
the training set which results from it. Multi-channel reac-
tions will be accounted for if they are included in the mech-
anism. Typical multi-channel reactions are

CH3 + 02 =0+ CH30 and
CH, + O, = OH + CH,0

The pathway followed will depend on temperature and on
the Arrhenius parameters for each reaction. Such infor-
mation will be implicit in the training set provided and
hence will be accounted for by the network.

Norberto Fueyo, University of Zaragoza/LITEC, Spain.
The most appropriate way of measuring how well your neu-
ral network is performing is by measuring the error it
makes with respect to the traditional method of integrating
the ODE equations for the chemical system. In neural net-
works, this is traditionally done by setting aside some of
your samples in a ‘test data set’, which is not used for train-
ing the network but only for assessing how well it performs
when presented with data that are not in the training set.

Have you followed this methodology? If so, which errors
are you obtaining on the test (not training) set?

The chemistry system you are using is rather simple,
with just one conserved scalar (that, being conserved, does
not need to be predicted by the network) and a reacted-
ness. Have you tried more complex systems, such as those
including minor species and possibly radicals? If so, which
RMS errors are you obtaining?

Author’s Reply. Yes, this is exactly the methodology that
was followed to test the generalisation capability of the
neural network. The data are divided into a “training set”
and a “test set”. Details of the training procedure and the
errors involved are given in Ref. 8 of the paper. Errors are
estimated using an “error function” definition, as given by
Eq. 1 in the body of the paper. Typically, acceptable levels
of the error-function for the training set are of the order
of 1 X 1075, but these depend on the nonlinearity of the
mechanism as well as the scalars used. The convergence of
the training algorithm, however, is satisfied if and only if
the values of the error functions (i.e. that of the training
set and the testing set) are below a predetermined thresh-
old level. Detailed analysis of the network’s error charac-
teristics are given in Ref. 8. The most important factor in
minimising the error is to provide a training set that is most
representative of the real system.

We have tried complex systems involving up to ten re-
actions. An example with five reactions involving radical
species like H and OH is described in Ref. 8. The resulting
error-function varies with from scalar to scalar and ranges
from 1 X 10-%to 1 X 10-6. Scalars with pdf’s that are
highly skewed generally result in larger errors which can
be reduced by histogram normalization as described in this
paper. Increasing the number of reactions and scalars does
not necessarily increase the difficulty of training or the er-
ror.



