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Abstract

In this paper, a weak second-order accurate mid-point scheme for the stochastic differential equations (SDEs) arising

in the composition PDF method for turbulent reactive flows is proposed and tested. The results are compared with two

other schemes which are commonly used in the composition PDF method. In contrast to most higher-order schemes for

SDEs, the present scheme uses a mid-point, which makes it especially suitable for the implementation of the position-

advance fractional step in the composition PDF method. The scheme can also be applied to the PDF method used in

conjunction with large eddy simulation (LES), since the SDEs considered in this paper include explicit time dependence

of the drift and diffusion coefficients. Test calculations are reported, including a 2D unsteady case, to demonstrate the

weak second-order accuracy of the scheme and to compare its performance to that of two first-order schemes. A new

methodology for developing higher-order scheme for SDEs (by comparing the moments of the increments of the nu-

merical approximation with those of the exact increments) is used to develop this scheme.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In application to turbulent reactive flows, PDF methods have the advantage of providing full infor-

mation on the turbulent fluctuations, and hence of avoiding the closure associated with non-linear chemical

reactions. The PDF calculations of Xu and Pope [27], Tang et al. [23], and Lindstedt et al. [12] clearly
demonstrate the ability of PDF methods to account accurately for strong turbulent–combustion interac-

tions such as local extinction and re-ignition. Background information on PDF methods is provided by

Pope [19,21]. Examples of recent composition PDF calculations are provided by Tsai and Fox [24], Mobus

et al. [15], James et al. [8], and Nooren et al. [16].
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The modeled PDF transport equations are usually solved numerically by particle methods. For the com-

position PDFmethod, there are two different approaches. In the ‘‘node-based’’ approach [18], there is a finite-

difference mesh in physical space, and at each node of the mesh the PDF is represented by an ensemble of

particles. In the ‘‘distributed-particle’’ approach [19], the particles are continuously distributed in physical

space. The node-based approach has the inherent limitation that it has only first-order spatial accuracy;

whereas a simple implementation of the distributed-particle approach yields second-order spatial accuracy.

Hence, although it is somewhat more difficult to implement, the distributed-particle approach is preferred.

In the distributed-particle implementation of the composition PDF method, there are a large number of
particles, each of which has a position XðtÞ and a composition /ðtÞ. The position XðtÞ of a particle evolves
by the stochastic differential equation (SDE)

dXðtÞ ¼ ~UU

�
þ 1

hqirCT

�
dt þ ð2CT=hqiÞ1=2 dW; ð1Þ

where ~UU is the Favre-mean velocity, hqi is the mean density, CT is the turbulent diffusivity, and WðtÞ is a
vector-valued Wiener process. The coefficients in Eq. (1) are evaluated at the particle location. (Pope [21]

provides an introduction to SDEs in the context of PDF methods.) This SDE can be written in the more

general form

dXðtÞ ¼ DðX½t	; tÞdt þ BðX½t	; tÞdW; ð2Þ

where DðX½t	; tÞ and BðX½t	; tÞ are the drift and diffusion coefficients, respectively. Both of these coefficients

include an explicit time dependence, which must be included for unsteady solutions that arise, for example,

in the use of PDF methods in conjunction with LES [2,7].
We are not concerned here with the details of the composition equation, and so we write it simply as

d/ðtÞ
dt

¼ Að/½t	;X½t	; tÞ: ð3Þ

The function A on the right-hand side represents the effects of reaction and mixing.

The coupled equations (1) and (3) for XðtÞ and /ðtÞ can be conveniently integrated numerically (from

time t0 to t0 þ Dt) by the following splitting scheme:

1. Eq. (1) is integrated for a time 1
2
Dt to obtain X1=2, an approximation to Xðt0 þ 1

2
DtÞ.

2. Eq. (3), with the right-hand side approximated by Að/½t	;X1=2; t0 þ 1
2
DtÞ, is integrated for a time Dt, to

obtain an approximation to /ðt0 þ DtÞ.
3. Eq. (1) is integrated from t0 þ 1

2
Dt to t0 þ Dt to obtain an approximation to Xðt0 þ DtÞ.

This scheme has two favorable properties. First, if each equation is integrated (separately) with second-

order temporal accuracy, then the overall (coupled) scheme is second-order accurate. Second, at each stage,

the coefficients in the equations are evaluated at the particle�s current location. (On the second step, typ-

ically a splitting scheme is used for reaction and mixing, possibly using sub-stepping.)

The objective of this work is to develop a second-order accurate scheme for integrating Eq. (1) that can

be used in the splitting scheme described above, i.e., a mid-point scheme.

The construction of higher-order numerical schemes for SDEs is considerably more involved than is the
case for ODEs. In recent years there has been much interest in designing numerical methods for stochastic

differential equations (SDEs). A comprehensive account of the theory and a compendium of schemes is

provided by Kloeden and Platen [10]. Although there are many methods for solving different types of SDEs

with different properties, e.g. [1,3–6,9,10,14,17,20,25], there is no higher-order mid-point scheme available

for the general class of SDE considered here (Eq. (2)). (Li and Modest [11] try to modify and apply the

scheme introduced by Welton and Pope in [25] to the general case, but it has been shown [13] that the

modified scheme is inconsistent with the SDE in general.)
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The second-order scheme developed here is compared to two simpler first-order schemes. The first is the

explicit Euler scheme, which is generally used in PDF methods. The second we refer to as the modified

Euler scheme. In the degenerate case of the diffusion coefficient being zero, this method becomes the

standard mid-point scheme for ODEs, which is second-order accurate. But in general (with non-zero dif-

fusion coefficient) the modified Euler scheme is first-order accurate.

Depending on the level of statistical errors arising from the finite number of particles, it may or may not

be beneficial to use a higher-order scheme, especially if it is computationally expensive. Because of this fact,

it is rare to find higher-order schemes being put to practical use for the solution of stochastic differential
equations in Monte Carlo methods: second-order accuracy is usually considered a good compromise be-

tween efficiency and accuracy [9].

Although motivated by the composition PDF method, the second-order accurate scheme developed

here is applicable to any SDE of the form of Eq. (2), and hence it may be useful also in other appli-

cations. (Eq. (2) is not the most general SDE possible, since the diffusion coefficient is taken to be a

scalar.)

We will begin in Section 2 by describing the three schemes mentioned above for the numerical inte-

gration of Eq. (2). These schemes are: the Euler scheme, the modified Euler scheme, and the weak
second-order mid-point scheme. All of these schemes are tested and compared (in Section 4) by reference

to a 2D unsteady turbulent test flow which is described in Section 3. Finally, conclusions draw from these

results in Section 5. A new methodology for developing higher-order scheme for SDEs (by comparing the

moments of the increments of the numerical approximation to those of the exact increments) is used to

develop this scheme. This methodology, and the analysis of developing the new scheme, are shown in

Appendix A.

2. Description of different schemes

2.1. Strong and weak convergence

Following [10], we introduce the definitions of strong and weak convergence and accuracy, and fol-

lowing [25] we argue that weak convergence and accuracy is appropriate in the context of PDF methods.

We consider the solution XðT Þ to the general SDE of the form of Eq. (2) after time T from the deter-

ministic initial condition Xð0Þ ¼ X0. This can be written as the Ito integral of Eq. (2):

XðT Þ ¼ X0 þ
Z T

0

DðX½t	; tÞdt þ
Z T

0

BðX½t	; tÞdWðtÞ: ð4Þ

We also consider a numerical approximation to XðT Þ, denoted by YðT Þ, which is obtained by approxi-

mately integrating Eq. (2) in a sequence of time steps of size Dt.
First we consider a particular given sample path of the Wiener process. Given WðtÞ, there is no ran-

domness in Eq. (4), and hence none in XðT Þ. The numerical approximation YðT Þ can be obtained by using

increments of the given Wiener process; and, for the scheme to be consistent, YðT Þ must converge to XðT Þ
as Dt tends to zero. The numerical scheme is deemed to be strong pth-order accurate if the error

e 
 jXðT Þ � YðT Þj is of order Dtp, i.e.,

jXðT Þ � YðT Þj6CDtp; ð5Þ

for some constant C which may depend on T and WðtÞ but is independent of Dt. This definition of strong

pth-order accuracy is the same as that used for ODEs. And as with ODEs, it follows that the error made on
each step must be of order Dtpþ1.
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In the second way of regarding Eq. (4), the sample path WðtÞ is not known, but is drawn from the

distribution of Wiener processes. In this case XðT Þ is a random variable. The numerical approximation

YðT Þ is obtained using samples of Wiener-process increments, and therefore is also a random variable. In

this case, it is meaningful only to consider the convergence of XðT Þ and YðT Þ in distribution. Such con-

vergence is most conveniently analyzed in terms of means hgðX½T 	Þi of test functions gðxÞ.
For the class of test functions considered, gðxÞ is bounded, infinitely differentiable, and its behavior as

jxj tends to infinity is such that the existence of means is not in question. Based on these ideas, the

numerical scheme is deemed to be weak pth-order accurate if the error eg 
 jhgðX½T 	Þi � hgðY½T 	Þij is of
order Dtp, i.e.,

jhgðX½T 	Þi � hgðY½T 	Þij6CgDtp; ð6Þ

where Cg may depend on g and T but is independent of Dt.
In PDF methods, an ensemble of statistically identical particles is tracked for the purpose of estimating

mean quantities. Hence it is weak accuracy that is relevant in this context.

2.2. The Euler scheme

Eq. (4) is the Ito integral of Eq. (2). The simplest numerical method to integrate this equation ap-

proximately is the explicit Euler scheme in which the solution is advanced from time t0 to t0 þ Dt by

Xðt0 þ DtÞ  Yðt0 þ DtÞ 
 Xðt0Þ þ DðX½t0	; t0ÞDt þ BðX½t0	; t0ÞDt1=2f; ð7Þ

where Yðt0 þ DtÞ is the numerical approximation to the exact value Xðt0 þ DtÞ, and f is a standardized

Gaussian random vector ðhfi ¼ 0; hfifji ¼ dijÞ. This method is only first-order accurate.

2.3. The modified Euler scheme

If the diffusion coefficient is zero ðB ¼ 0Þ in Eq. (2), then the stochastic differential equation degenerates

to the ordinary differential equation (ODE)

dX

dt
¼ DðX½t	; tÞ: ð8Þ

This can be integrated numerically by the second-order accurate mid-point scheme:

X1=2 
 Xðt0Þ þ 1
2
DtDðX½t0	; t0Þ; ð9Þ

Xðt0 þ DtÞ  Yðt0 þ DtÞ 
 Xðt0Þ þ DtD X1=2; t0
�

þ 1
2
Dt
�
: ð10Þ

In the general case with a strictly positive diffusion coefficient, the modified Euler scheme is defined to be

the above mid-point scheme, with a diffusion added to the final step. Thus, the scheme is

X1=2 
 Xðt0Þ þ 1
2
DtDðX½t0	; t0Þ; ð11Þ

Xðt0 þ DtÞ  Yðt0 þ DtÞ 
 Xðt0Þ þ D X1=2; t0
�

þ 1
2
Dt
�
Dt þ B X1=2; t0

�
þ 1

2
Dt
�
Dt1=2f: ð12Þ

For the general case (B > 0), this scheme is weak first-order accurate.
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2.4. The weak second-order mid-point scheme

In Appendix A, by comparing the moments of the increments of the numerical approximation with those

of the exact increments, we develop a weak second-order accurate mid-point scheme for the numerical

integration of Eq. (2).

This scheme is defined for the general step from time t0 to t0 þ Dt from the initial condition Xðt0Þ ¼ X0.

The result, Yðt0 þ DtÞ ¼ X0 þ DY, is a weak second-order approximation to Xðt0 þ DtÞ ¼ X0 þ DX. This

claim is substantiated in Appendix A where it is shown that this scheme satisfies the sufficient conditions for

a scheme to be weak second-order accuracy.

The scheme involves onemid-point (i.e., an approximation toXðt0 þ 1
2
DtÞ) which is denoted byM and three

independent standardized Gaussian random vectors, denoted by f, n, and g, which have the following

properties:

hfi ¼ hni ¼ hgi ¼ 0; ð13Þ

hfifji ¼ hninji ¼ hgigji ¼ dij: ð14Þ

A derived zero-mean random tensor Nij is also used in this scheme, which is defined by

NijðgÞ 
 gigj � dij: ð15Þ

The weak second-order mid-point scheme is defined by

M 
 X0 þ 1
2
DtD0 þ 1

2
Dtb0

� �1=2
f; ð16Þ

Xðt0 þ DtÞ  Yðt0 þ DtÞ 
 X0 þ DY; ð17Þ

DYi 
 DtDM
i þ 1

2
DtbM

� �1=2ðni þ giÞ þ 1
2
DtbM

;j NijðgÞ � 1
2
Dt

� �3=2
gM
ij ðnj þ gjÞ; ð18Þ

where the superscripts and subscripts ‘‘0’’ and ‘‘M’’ denote quantities evaluated at the initial point ðX0; t0Þ,
and at the mid-point ðM; t0 þ 1

2
DtÞ, respectively. The quantity b is defined as the square of the diffusion

coefficient

b 
 B2; ð19Þ

and its spatial derivative are denoted by

b;i 

ob
oxi

: ð20Þ

The final term in Eq. (18) introduces the symmetric second-order tensor gij which is defined by

gij 
 BðB;iB;j þ B;kB;kdijÞ � 1
2
BðDi;j þ Dj;iÞ ¼ 1

4
b�1=2ðb;ib;j þ b;kb;kdijÞ � 1

2
b1=2ðDi;j þ Dj;iÞ; ð21Þ

with

Di;j 

oDi

oxj
: ð22Þ

The accuracy and efficiency of these schemes are examined in Section 4.
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3. Numerical test case

Computations were performed for a sequence of 1D and 2D test cases of increasing complexity in order

to measure the numerical error (as a function of Dt) incurred by the three schemes considered.

Test cases with different ratios of the drift term and the diffusion term were investigated, including two

extreme cases: the pure drift problem (in which the diffusion term is set to zero) and the pure diffusion

problem (in which the drift term is set to zero). These tests confirm that the present scheme is strong second-

order accurate for the pure drift problem and weak second-order accurate for the pure diffusion problem.
It suffices to describe here the final case in the sequence, which is an unsteady 2D flow with circular

streamlines. The test case is described in this section, and the results of the tests are shown in the following

section.

While the particle method and SDE integrations are performed in Cartesian coordinates ðx1; x2Þ, the flow
is naturally described in polar coordinates ðr; hÞ, with x1 ¼ r cos h and x2 ¼ r sin h. The coefficients in the

SDE Eq. (1) are hqi, ~UU, and CT. The density is taken to be unity. The velocity field corresponds to an

unsteady flow with circular streamlines,

~UU1ðx1; x2; tÞ ¼ �uhðr; tÞ sin h; ð23Þ

~UU2ðx1; x2; tÞ ¼ uhðr; tÞ cos h; ð24Þ

where (following Yeung and Pope [28]) the circumferential velocity is specified as

uhðr; tÞ ¼ r½1� 3ðrpÞ
2 þ 3ðrpÞ

4 � ðrpÞ
6	ð1þ cos 4tÞ=2 for r6 p;

0 otherwise:

�
ð25Þ

The turbulent diffusivity is specified to be

CTðx1; x2; tÞ ¼ 1
�

þ 1
2
sin r

�
ð1þ cos 2tÞ=2: ð26Þ

Each particle in the computation has a Cartesian position XðtÞ ¼ fX1ðtÞ;X2ðtÞg, and a corresponding

radial position

RðtÞ 
 jXðtÞj ¼ ½XiðtÞXiðtÞ	1=2: ð27Þ

In addition, each particle has a scalar composition /ðtÞ which is conserved, i.e., d/=dt ¼ 0. The initial

composition /ð0Þ is set deterministically based on the particle�s position as

/ð0Þ ¼ 1
2
p2

�
� 2

�
exp

h
� 1

4
Rð0Þ2

i
: ð28Þ

The mean composition is defined by

Uðr; tÞ 
 h/ðtÞjRðtÞ ¼ ri; ð29Þ

i.e., as the mean of /ðtÞ conditioned on the radial location of the particle.

It is readily deduced (e.g., from the composition PDF equation) that, for the flow considered, the mean

composition evolves by the standard diffusion equation

oU
ot

¼ 1

r
o

or
CT

oU
or

� �
; ð30Þ

with the initial condition corresponding to Eq. (28) and the boundary conditions ðoU=orÞr¼0 ¼ 0

and Uð1; tÞ ¼ 0. An extremely accurate numerical solution to this equation was obtained using

R. Cao, S.B. Pope / Journal of Computational Physics 185 (2003) 194–212 199



Crank–Nicolson [22], followed by Richardson extrapolation. This is taken as the ‘‘exact’’ solution against

which the particle-method solutions are compared. (Eq. (28)) was chosen so that Eq. (30) has an analytic

solution for the case CT ¼ constant, which is an earlier test case.)

Fig. 1 shows the evolution of the mean composition Uðr; tÞ computed from Eq. (30). We take T ¼ 1 to be

the reference time at which to measure the numerical errors (and thus to be the duration of the particle-

method computations). It may be seen from Fig. 1, that at t ¼ 1, the mean composition is negligible beyond

r ¼ 5, say.

The particle method computations are performed in a square box of side 6p with periodic boundary
conditions. Given that the velocity is zero beyond r ¼ p, and that U is very small beyond r ¼ 5, this box (of

half-side 3p  9:4) is sufficiently large so that the solution Uðr; tÞ (for r6 5, t6 1) corresponds to that in an

infinite domain.

Each simulations is performed with 40,960 particles. To specify the initial conditions, the solution do-

main is divided into square cells by a uniform 64� 64 grid, and then 10 particles are placed randomly in

each cell with a uniform distribution. In order to reduce the statistical error in estimates of means obtained

from the particles, for a given case (i.e., given scheme and value of Dt), 4000 statistically identical but

independent simulations are performed, to yield effectively 4000� 40; 960  1:6� 108 particles per case.
In order to extract information on the mean composition, the radial coordinate is divided into cells of

length Dr ¼ 3p=32, so that the kth cell ðk P 1Þ extends from r ¼ ðk � 1ÞDr to r ¼ kDr. In the x1–x2 plane,
the kth cell corresponds to an annulus of width Dr, and outer radius kDr. For a given case at time t, let NkðtÞ
be the number of particles in cell k, and let SkðtÞ be the sum of the particle values of / in the cell. Then

ÛUkðtÞ 
 SkðtÞ=NkðtÞ; ð31Þ

i.e., the arithmetic mean of / of particles in the cell, is an approximations to the cell mean

UkðtÞ 

R kDr
ðk�1ÞDr rUðr; tÞdrR kDr

ðk�1ÞDr rdr
: ð32Þ

Fig. 1. Evolution of the mean composition Uðr; tÞ obtained from the solution to Eq. (30).
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The numerical error at the reference time T ðt ¼ 1Þ is then defined as

ek 
 jÛUkðT Þ � UkðT Þj: ð33Þ

In general, in a PDF particle method, the numerical error (e.g., ek) arises from: bias; statistical error;
spatial truncation error; and temporal truncation error [26]. In the present case the bias is zero (since the

particles are independent), and there is no spatial truncation error (since the coefficients, e.g., ~UU, are

evaluated exactly at particle locations, not interpolated from a grid). The large effective number of particles

( 1:6� 108) is chosen so that the statistical error is small, but it is not insignificant compared to the

temporal truncation error (for small Dt with the second-order scheme). It is important, therefore, to

construct confidence intervals.

The confidence intervals shown in the figures below are 95% confidence intervals based on the as-

sumption that ÛUkðT Þ (Eq. (31)) is normally distributed. Given the large number of particles involved
( 1:6� 108), ensemble means can be expected to be normally distributed and this was confirmed directly

for a few cases. Thus the upper and lower confidence intervals for ÛUkðT Þ are given by

ÛUðuÞ
k ðtÞ ¼ ÛUkðtÞ þ Ka=2r̂rk=

ffiffiffiffiffiffiffiffiffiffiffi
NkðtÞ

p
; ð34Þ

ÛUðlÞ
k ðtÞ ¼ ÛUkðtÞ � Ka=2r̂rk=

ffiffiffiffiffiffiffiffiffiffiffi
NkðtÞ

p
: ð35Þ

Fig. 2. The convergence of different schemes: (a) Euler scheme; (b) modified Euler scheme; (c) second-order scheme. Computed cell

mean composition ÛUkð1Þ against cell radius rk at t ¼ 1 for different values of time step: s, Dt ¼ 1; }, Dt ¼ 1=2; �, Dt ¼ 1=3; +,

Dt ¼ 1=4; �, Dt ¼ 1=6; and solid lines: exact value Ukð1Þ.
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Here NkðtÞ is the number of particles in cell k; Ka=2 is a constant corresponding to the confidence interval

1� a (e.g., Ka=2 ¼ 1:96 for a ¼ 0:05, corresponding to a 95% confidence interval); and r̂rk is the estimation of

the SD of ÛUkðtÞ which is obtained by

r̂rk ¼
PNkðtÞÞ

i¼1 ð/i � ÛUkðtÞÞ2

NkðtÞ
: ð36Þ

4. Results and discussion

Not all of the calculation results can be shown here because of space limitations. The conclusions,

however, are supported by the results given. All of the figures shown in this section are based on the three

schemes described in Section 2 and the test case described in Section 3.

4.1. Accuracy

Fig. 2 shows the cell mean compositions ÛUkð1Þ (computed) and Ukð1Þ (exact), plotted against the cell-

center radius rk 
 ðk � 1
2
ÞDr, for different schemes and for different time steps. Figs. 2(a)–(c) are the Euler

scheme, the modified Euler scheme, and the second-order scheme, respectively. The overall converging
tendency may be seen in this plot, and the following observations can be made. First, the second-order

scheme and the modified Euler scheme clearly have small errors than the Euler scheme. Second, the error

changes sign at different places for different schemes. Third, the values of Uk are very small beyond r ¼ 5.

Fig. 3. The absolute error ek ¼ jÛUkð1Þ � Ukð1Þj for different values of Dt at the third cell. (a) Euler scheme; (b) modified Euler scheme;

(c) second-order scheme. Dash dotted line: line with slope 1; dashed line: line with slope 2;d e3; and error bar: 95% confidence interval.
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To determine the consistency and the order of accuracy, we plot the errors ek (Eq. (33)) against Dt on a

log–log plot so that the slope of these test points represents the order of accuracy of the scheme. For these

plots we select the representative cells k ¼ 3 and 13, which are removed from the locations where the error
changes sign, and at which the value of Ukð1Þ is at least two orders higher than the statistical error. (The

exact values are U3ð1Þ ¼ 0:8729 and U13ð1Þ ¼ 0:1032, respectively. The 95% confidence interval is of order

10�3).

The errors e3ð1Þ and e13ð1Þ are shown in Figs. 3 and 4 together with their 95% confidence intervals. Both

figures support the same conclusions. It may be seen that, for both the Euler and modified Euler schemes,

the error ekð1Þ increases linearly with Dt (i.e., with slope 1 in the figures), showing that these schemes are

first-order accurate. However, compared to the Euler scheme, the magnitude of the errors in the modified

Euler scheme is significantly smaller. (Note that different scales are used in the plots for these two schemes.)
In contrast, it may be seen that ekð1Þ increases as Dt2 (i.e., slope 2 in the figures) for the weak second-order

scheme, confirming that it is indeed second-order accurate. (The plateau observed for small Dt reflects the
statistical precision of the test; the confidence interval extends to zero.)

4.2. Efficiency

We now compare the efficiency and other characteristics of different schemes.

The most efficient algorithm is that which produces the numerical solution to a specified accuracy at a

minimum computational cost. In the composition PDF method, the overall computational cost C for a

scheme to obtain the result within a specified error tolerance e can be defined as

C 
 CX þ C/ ¼ NðeÞðcX þ c/Þ; ð37Þ

Fig. 4. The absolute error ek ¼ jÛUkð1Þ � Ukð1Þj for different values of Dt at the 13th cell. (a) Euler scheme; (b) modified Euler scheme; (c)
second-order scheme. Dash dotted line: line with slope 1; dashed line: line with slope 2; d e13; and error bar: 95% confidence interval.

R. Cao, S.B. Pope / Journal of Computational Physics 185 (2003) 194–212 203



where the CX and C/ are the overall costs for the position-advance and composition calculations, respec-

tively; cX and c/ are the corresponding costs per step; and NðeÞ is the number of time steps required for the

scheme to satisfy the specified error tolerance e.
It may be seen, then, that the relative efficiency depends on three parameters: NðeÞ, cX, and c/. While

NðeÞ and cX depend on the position-advance scheme, c/ does not.

We can consider the two extreme cases in which the ratio c/=cX is very large and very small. The first case

corresponds, for example, to the composition being composed of many reactive species, so that the com-

putational effort is dominated by the composition equation, i.e., C  NðeÞc/. Thus, for this case, the cost is

simply proportional to the number of steps required, NðeÞ. Table 1 shows the number of steps required by

the different schemes to achieve relative errors of 10%, 1%, and 0.1% at the two reference cells (k ¼ 3 and

13). It may be seen that the modified Euler scheme requires fewer steps than the Euler scheme by a factor

between 3 and 10. Since both of these schemes are first-order accurate, this conclusion holds for all error
levels. The second-order scheme becomes more advantageous as the error tolerance is decreased. Compared

to the modified Euler scheme, the second-order scheme requires fewer steps by a factor of 2–4 for a 1%

error tolerance, and by a factor of 6–18 for a 0.1% tolerance.

For the second case, in which the composition-advance work C/ is negligible, the overall cost is

C  NðeÞcX. To compare the cost of different schemes, we need therefore to assess their relative costs per

step ðcXÞ. Table 2 compares the attributes of the three schemes (and a scheme of Kloeden and Platen [10]

which is discussed below). Shown in the table are: the number of random numbers required per step; and

the number of coefficient evaluations required per step, which are sub-divided into local (e.g., b0), first
spatial derivative (e.g., bM

;i ), second spatial derivatives (e.g., b
M
;ij) and temporal derivatives (e.g.,

_bb0). The cost
per step cX is estimated as being proportional to the sum of the number of random numbers and coefficient

Table 1

Number of time steps NkðeÞ required to yield a relative error ek=Ukð1Þ less than the relative-error tolerance e (for the standard test case
for cell k)

NkðeÞ Euler scheme Modified Euler scheme Second-order scheme

N3ð0:1Þ 3 1 1

N3ð0:01Þ 40 5 3

N3ð0:001Þ 476 45 7

N13ð0:1Þ 6 1 1

N13ð0:01Þ 64 22 5

N13ð0:001Þ 520 180 10

Table 2

Attributes of different schemes

Per step Euler scheme Modified Euler

scheme

Second-order

mid-point scheme

Kloeden scheme

Random numbers 3 3 9 6

Local coefficients 4 7 8 4

First spatial derivatives 0 0 12 12

Second spatial derivatives 0 0 0 9

First temporal derivatives 0 0 0 4

Sum 7 10 29 35

Relative cost, cX 1 1.4 4.1 5

The computational cost per step cX is estimated as being proportional to the sum of the number of random number and coefficient

evaluations required per step.
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evaluations per step. For the Euler, modified Euler and second-order schemes, the values of cX are esti-

mated to be in the ratios 1:1.4:4.1.

Table 3 shows the estimate of CX, obtained by multiplying NðeÞ from Table 1 by cX from Table 2. It may

be seen that the modified Euler scheme requires less work than the Euler scheme by a factor of 2–7. The

relative cost of the modified Euler scheme and the second-order scheme depends on the specified error

tolerance. With a 1% error tolerance the schemes have comparable cost, with the second-order scheme

becoming advantageous as the error tolerance is decreased.

In the case of complex grids in which the derivatives are relatively expensive to evaluate in terms of
computational cost, the implementation cost of the second-order scheme may be significantly higher than in

the case considered above, in which the computational cost of each numerical operation (derivatives,

random numbers, etc.) are taken to be comparable.

5. Conclusions

We consider the stochastic differential equations in the form of Eq. (2) arising in the composition PDF
method (as Eq. (1)). A weak second-order mid-point scheme has been developed for the numerical inte-

gration of these equations. The scheme consists of Eq. (18) for the increment in the process, which involves

coefficients evaluated at one mid-point, and three independent standardized Gaussian random vectors. In

contrast to most higher-order schemes for SDEs, this scheme uses a mid-point, which makes it especially

appropriate for the implementation of the position-advance fractional step in the composition PDF

method. The scheme can also be applied to the PDF method used in conjunction with large eddy simulation

(LES), since the SDEs considered in this paper include explicit time dependence of the drift and diffusion

coefficients.
The second-order mid-point scheme has been tested in a sequence of 1D and 2D test cases of increasing

complexity in order to test its consistency and weak second-order accuracy. The final test case, i.e., an

unsteady 2D turbulent flow with circular stream line, is described in Section 3 and the results are shown in

Section 4. The results are compared with Euler scheme and modified Euler scheme which are commonly

used in the composition PDF methods. The analysis of developing this scheme is shown in Appendix A.

The Euler scheme is the simplest scheme and can be used in simple applications, or if the work of

programming is the primary consideration.

The modified Euler scheme is better than the Euler scheme for most applications based on the following
reasons. First, it is a mid-point scheme and therefore suitable for the splitting scheme in the composition

PDF method. Second, the overall calculation cost of the modified Euler scheme is much less than that of the

Euler scheme (for given accuracy). Finally, it is also easy to be implemented since only a slight modification

need to be made on the Euler scheme.

Table 3

Relative computational work CX ¼ NðeÞcX required to yield a relative error ek=Ukð1Þ less than the relative-error tolerance e (for the
standard test case for cell k)

Cell, k Relative error

tolerance, e
Euler scheme Modified Euler

scheme

Second-order

scheme

3 0.1 3 1.4 4.1

3 0.01 40 7 12.3

3 0.001 476 63 28.7

13 0.1 6 1.4 4.1

13 0.01 64 30.8 20.5

13 0.001 520 252 41
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For complex applications (e.g., with many reactive species) or if a small error tolerance (e.g., 6 0:1%) is
required, then the importance of the computational cost increases so that the second-order scheme becomes a

good choice since its overall calculation cost is much less than that of the first-order scheme in this situation.

The weak second-order mid-point scheme proposed in the paper has several advantages when compared

with other weak second-order scheme available now for the SDEs in the form of Eq. (2). First, it is mid-

point scheme which is particularly appropriate for the PDF method. Second, it does not require the

evaluation of the temporal derivatives for the coefficients (which are difficult to get in the PDF method).

Third, only the first spatial derivatives are needed. A second-order scheme for the SDEs in the form of Eq.
(2) is briefly stated in Appendix B. This scheme is not appropriate for the applications of the composition

PDF method because of the above reasons.

In the development of this new scheme, a new methodology is used by comparing the moments of the

increments of the numerical approximation with those of the exact increments. This method provides a

different way of developing higher-order schemes for the stochastic differential equations. It is illustrated in

Appendix A by using it to develop the second-order scheme proposed in this paper.
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Appendix A. Development of the weak second-order scheme

In this section, we present the details of the development of the weak second-order mid-point scheme

(Eqs. (16)–(18)) described in Section 2.4. The present analysis is based on the contents of Sections 1 and 2,

including notation introduced there.

A.1. Sufficient conditions for weak second-order accuracy

In this Section, we consider the numerical integration of the the general SDEs in the form of Eq. (2). A

sufficient condition for weak pth-order accuracy is that the error incurred on each step be of order Dtpþ1. To
make this precise we consider the general step from time t0 to time t0 þ Dt with the deterministic initial

condition Xðt0Þ ¼ Yðt0Þ ¼ X0. Then the requirement is

gðX½t0
��� þ Dt	ÞjXðt0Þ ¼ X0

�
� gðY½t0
�

þ Dt	ÞjYðt0Þ ¼ X0
���6CgDtpþ1: ðA:1Þ

This requirement can be re-expressed in terms of the increments in X and Y which are defined by

DX 
 Xðt0 þ DtÞ � X0 ðA:2Þ
and

DY 
 Yðt0 þ DtÞ � Y0 ¼ Yðt0 þ DtÞ � X0: ðA:3Þ

A Taylor series expansion then yields

gðX½t0 þ Dt	Þ ¼ gðX0 þ DXÞ ¼ g0 þ g0;iDXi þ 1
2!
g0;ijDXiDXj � � � ; ðA:4Þ

where g0;i denotes og=oxi evaluated at X0, etc. Substituting Eq. (A.4) for gðX½t0 þ Dt	Þ and the analogous

expansion for gðY½t0 þ Dt	Þ into Eq. (A.1), we obtain the sufficient condition for weak pth-order accuracy

g0;iðhDXii
��� � hDYiiÞ þ 1

2!
g0;ijðhDXiDXji � hDYiDYjiÞ � � �

���6CgDtpþ1: ðA:5Þ
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It is shown below that for n being a positive even integer (including zero), the nth (i.e., even) moments of DX

are of order Dtn=2, and the (nþ 1)th (i.e., odd) moments are of order Dt1þn=2. In particular,

hDXii ¼ OðDtÞ; ðA:6Þ

hDXiDXji ¼ OðDtÞ; ðA:7Þ

hDXiDXjDXki ¼ OðDt2Þ; ðA:8Þ

hDXiDXjDXkDXli ¼ OðDt2Þ; ðA:9Þ

and

hDXiDXjDXkDXlDXmi ¼ OðDt3Þ: ðA:10Þ

Thus sufficient conditions for the numerical scheme to be weak second-order accurate are: that the first four

moments of DY approximate those of DX with an error of order Dt3; and that the fifth and higher moments
be at most of order Dt3.

In the following two sections: the coefficients in the series expansions for the moments of DX are de-

termined; and it is shown that the moments of DY given by the weak second-order accurate scheme (Eqs.

(16)–(18)) of Section 2.4 satisfy the sufficient conditions given in this section.

A.2. Moments of DX

To simplify the notation, and without loss of generality, we consider the step from t ¼ 0 to t ¼ Dt (i.e.,
t0 ¼ 0), from the deterministic initial condition Xð0Þ ¼ 0. (The step from t0 to t0 þ Dt with initial condition

Xðt0Þ ¼ X0 can be transformed into this simpler form.) The increment DX over the time step is simply

DX 
 XðDtÞ � Xð0Þ ¼ XðDtÞ: ðA:11Þ

The moments of XðtÞ can be determined from its PDF which is denoted by f ðx; tÞ. More generally, means of

functions of XðtÞ can be obtained from

hQðX½t	Þi ¼
Z

QðxÞf ðx; tÞdx; ðA:12Þ

where the integration is over all x. Expanding f in a Taylor series about t ¼ 0 yields

hQðX½Dt	Þi ¼
Z

QðxÞ f0

�
þ Dt _ff0 þ

1

2
Dt2€ff0

�
dx þ OðDt3Þ; ðA:13Þ

where _ff0 denotes of =ot evaluated at t ¼ 0, etc.
Now XðtÞ evolves by the SDE Eq. (2), so f ðx; tÞ evolves by the corresponding Fokker–Planck equation

([10])

_ff 
 of
ot

¼ � o

oxi
½fDiðx; tÞ	 þ

o2

oxi oxi

1

2
fbðx; tÞ

� �
; ðA:14Þ

from the initial condition

f0ðxÞ 
 f ðx; 0Þ ¼ dðxÞ; ðA:15Þ
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where

bðx; tÞ 
 Bðx; tÞ2: ðA:16Þ

In view of this initial condition, the first term in Eq. (A.13) isZ
QðxÞf0 dx ¼ Q0 
 Qð0Þ: ðA:17Þ

The coefficient of the second term in the series equation (A.13) isZ
QðxÞ _ff0 dx ¼

Z
QðxÞ

�
� o

oxi
½fDi	 þ

o2

oxixi

1

2
fb

� ��
0

dx ¼
Z

fDi
oQ
oxi

�
þ 1

2
fb

o2Q
oxi oxi

�
0

dx

¼ D0
i Q

0
;i þ

1

2
b0Q0

;ii; ðA:18Þ

where a subscript or superscript ‘‘0’’ indicates evaluation at x ¼ 0.

The third term in the series involves €ff which is obtained by differentiating Eq. (A.14)

€ff ¼ � o

oxi
_ffDi

h
þ f _DiDi

i
þ 1

2

o2

oxi oxi
_ff b

h
þ f _bb

i
; ðA:19Þ

and then substituting Eq. (A.14) for _ff . When the result is substituted for the third term in Eq. (A.13) and

integrated, the resulting coefficient isZ
QðxÞ 1

2
€ff0 dx ¼

1

2
D0

jD
0
i;jQ

0
;i þ

1

2
D0

jD
0
i Q

0
;ij þ

1

2
_D0
iD
0
i Q

0
;i þ

1

4
b0ðD0

i;jjQ
0
;i þ 2D0

i;jQ
0
;ij þ D0

i Q
0
;ijjÞ

þ 1

4
D0

j ðb0;jQ0
;ii þ b0Q0

;iijÞ þ
1

4
_b0b0Q0

;ii þ
1

8
b0ðb0;jjQ0

;ii þ 2b0;jQ
0
;iij þ b0Q0

;iijjÞ: ðA:20Þ

The series expansions for moments of XðtÞ are obtained by substituting the corresponding moments of x
for Q. For example, the series for hXpXqi is obtained by substituting Q ¼ xpxq. In this case, Q and its first

derivatives,

ðxpxqÞ;i ¼ xpdqi þ xqdpi; ðA:21Þ

make no contribution since they are zero at the origin ðx ¼ 0Þ. The second-derivative terms,

ðxpxqÞ;ij ¼ dpidqj þ dqidpj; ðA:22Þ

are non-zero for x ¼ 0 and hence lead to non-trivial contributions. Third and higher derivatives are zero.

So, in general, contributions to an mth moment arise solely from terms containing an mth derivative of Q.
Since the highest derivative of Q in the first three terms of the series is a fourth derivative, it follows im-

mediately that fifth and higher moments have no contributions from these terms and hence are at most of
order Dt3.

Explicit evaluation of the series (from Eqs. (A.13), (A.17), (A.18), and (A.20)) for the first four moments

of DX ¼ XðDtÞ yields

hDXpi ¼ DtD0
p þ Dt2 1

2
D0

jD
0
p;j

n
þ 1

4
b0D0

p;jj þ 1
2
_D0
pD0
p

o
þ OðDt3Þ; ðA:23Þ

hDXpDXqi ¼ Dtb0dpq þ Dt2 D0
pD

0
q

n
þ 1

2
b0ðD0

p;q þ D0
q;pÞ þ 1

2
dpqD0

j b
0
;j þ 1

4
b0b0;jjdpq þ 1

2
_b0b0dpq

o
þ OðDt3Þ;

ðA:24Þ

208 R. Cao, S.B. Pope / Journal of Computational Physics 185 (2003) 194–212



DXpDXqDXr

� �
¼ Dt2 b0ðD0

pdqr

n
þ D0

qdpr þ D0
rdpqÞ þ 1

2
b0ðb0;pdqr þ b0;qdpr þ b0;rdpqÞ

o
þ OðDt3Þ; ðA:25Þ

hDXpDXqDXrDXsi ¼ Dt2b20ðdpqdrs þ dprdqs þ dpsdqrÞ þ OðDt3Þ: ðA:26Þ

A.3. Moments of DY

The weak second-order mid-point scheme Eqs. (16)–(18) proposed in Section 2.4 is analyzed by deter-
mining the moments of DY. It is shown that these agree with those of DX (Eqs. (A.23)–(A.26)) to order Dt2,
thus establishing the scheme�s weak second-order accuracy.

As before, to simplify the notation and without loss of generality, we take t0 ¼ 0 and X0 ¼ 0. In the

evaluation of the moments of DY, we will use the first and second moments of M in many places. From the

definition of M (Eq. (16)) with X0 ¼ 0, these moments are determined to be:

hMii ¼ 1
2
DtD0

i ¼ OðDtÞ; ðA:27Þ

hMiMji ¼ 1
2
Dtb0dij þ 1

4
Dt2D0

i D
0
j ¼ 1

2
Dtb0dij þ OðDt2Þ: ðA:28Þ

Thus we have

hMiDti ¼ 1
2
Dt2D0

i ¼ OðDt2Þ: ðA:29Þ

A.3.1. First moments

The mean of DYp (Eq. (18)) is:

hDYpi ¼ Dt DM
p

D E
þ 1

2
DtbM

� �1=2D E
hðnp þ gpÞi þ 1

2
DtbM

;i

D E
hNipðgÞi � 1

2
Dt

� �3=2
gM
pi

D E
hðni þ giÞi: ðA:30Þ

Note that the last three terms on the right-hand side can be decomposed as the product of two means
because M is independent of n and g; and these terms then vanish, because the means of n, g, and Nip are

zero. The remaining term is

hDYpi ¼ Dt DM
p

D E
: ðA:31Þ

The coefficient hDM
p i can be expressed in terms of the moments of M by expanding hDM

p i in a Taylor series

DM
p

D E
¼ D0

p þ D0
p;ihMii þ 1

2
D0

p;ijhMiMji þ _DD0
p

1
2
Dt

� �
þ OðDt2Þ: ðA:32Þ

Substituting Eqs. (A.27) and (A.28) into the above two equations yields

hDYpi ¼ DtD0
p þ Dt2 1

2
D0

jD
0
p;j

�
þ 1

4
b0D0

p;jj þ 1
2
_DD0
p

�
þ OðDt3Þ; ðA:33Þ

which agrees with Eq. (A.23) for hDXpi to order Dt2.

A.3.2. Second moments

Several results needed in the evaluation of the second moments of DY are:

hgiNjki ¼ hgigjgki � hgiidjk ¼ 0; ðA:34Þ
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hNipNjqi ¼ hðgigp � dipÞðgjgq � djqÞi ¼ hgigjgpgqi � hgigpidjq � hgjgqidip þ dipdjq

¼ dijdpq þ dipdjq þ diqdjp � dipdjq � djqdip þ dipdjq ¼ dijdpq þ diqdjp; ðA:35Þ

hbMi ¼ b0 þ b0;jhMji þ 1
2
b0;ijhMiMji þ _b0b0 1

2
Dt

� �
þ OðDt2Þ

¼ b0 þ 1
2
b0;jD

0
j

�
þ 1

4
b0;jjb0 þ 1

2
_b0b0
�
Dt þ OðDt2Þ; ðA:36Þ

DM
p D

M
q

D E
¼ D0

pD
0
q þ OðDtÞ; ðA:37Þ

bM
;i b

M
;j

D E
¼ b0;ib

0
;j þ OðDtÞ: ðA:38Þ

From Eq. (18) and Eqs. (A.34)–(A.38), we obtain

hDYpDYqi ¼ Dt2 DM
p D

M
q

D E
þ 1

2
DthbMi2dpq þ 1

4
Dt2 bM

;i b
M
;j

D E
ðdijdpq þ diqdjpÞ

� 1
2
Dt2 b1=2M gM

qp

hD
þ gM

pq

iE
þ OðDt3Þ

¼ Dt2D0
pD

0
q þ Dtdpq b0

�
þ b0;i

1
2
DtD0

i þ b0;ii
1
4
Dtb0 þ 1

2
_b0b0Dt

�
þ 1

4
Dt2ðb0;ib0;idpq þ b0;qb

0
;pÞ

� 1
2
Dt2 b1=2M gM

qp

hD
þ gM

pq

iE
þ OðDt3Þ: ðA:39Þ

By construction of the scheme, the symmetric second-order tensor gij (Eq. (21)) is defined so that Eq. (A.39)
agrees with Eq. (A.24) to order Dt2.

A.3.3. Third moments

When third moments of DY are formed from Eq. (18), we have the following observations:

• Since hðnp þ gpÞðnq þ gqÞðnr þ grÞi ¼ 0, the products of the square of the second term with the fourth

term equals zero.

• The leading-order terms are of order Dt2 and arise from products of the square of second term with the
first and third terms.

• Other terms are at most of order Dt3.
The correlations of g and NijðgÞ that arise can be evaluated as, for example:

hðnp þ gpÞðnq þ gqÞNriðgÞi ¼ hgpgqNiri ¼ hgpgqðgigr � dirÞi ¼ hgpgqgigri � hgpgqidir

¼ dpqdir þ dpidqr þ dprdqi � dpqdir ¼ dpidqr þ dprdqi: ðA:40Þ

Thus, we can obtain the third moments of DY:

hDYpDYqDYri ¼ 1
2
Dt2 bMDM

r

� �
2dpq

�
þ bMDM

p

D E
2dqr þ bMDM

q

D E
2dpr

�
þ 1

4
Dt2 bMbM

;j

D E
ðhgpgqNrji

þ hgqgrNpji þ hgpgrNqjiÞ

¼ Dt2 b0ðD0
pdqr

n
þ D0

qdpr þ D0
rdpqÞ þ 1

2
b0ðb0;pdqr þ b0;qdpr þ b0;rdpqÞ

o
þ OðDt3Þ; ðA:41Þ

which agrees with the third moments of DX (Eq. (A.25)) to order Dt2.
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A.3.4. Fourth moments

To order Dt2, the fourth moment of DY arises entirely from the second term in Eq. (18), and is:

hDYpDYqDYrDYsi ¼ 1
2
DtbM

� �2hðnp þ gpÞðnq þ gqÞðnr þ grÞðns þ gsÞi
¼ Dt2b20ðdpqdrs þ dprdqs þ dpsdqrÞ þ OðDt3Þ; ðA:42Þ

in agreement with Eq. (A.26) to order Dt2.

A.3.5. Higher moments

It may be observed that although DY (Eq. (18)) contains contributions of order Dt1=2 and Dt3=2, the
expansions for the moments of DY are in integer powers of Dt. This is because the terms in Dt1=2 and Dt3=2

are multiplied by zero-mean Gaussian random variables, and hence only contribute to moments when

multiplied by themselves or each other an even number of times.

It follows immediately that fifth and higher moments of DY are at most of order Dt3. Thus we have

verified that the scheme proposed in this paper satisfies the sufficient conditions to be weak second-order
accurate.

Appendix B. One step weak second-order scheme [10]

In this section is a brief description of the weak second-order scheme proposed by Kloeden and Platen

[10] for the SDEs which have the form of Eq. (2). The notation is the same as defined in previous sections.

Following [10], consider the general step from time t0 to t0 þ Dt from the initial condition Xðt0Þ ¼ X0.

Recall Eq. (17) of Section 2.4,

Xðt0 þ DtÞ  Yðt0 þ DtÞ 
 X0 þ DY; ðB:1Þ

where Yðt0 þ DtÞ is the numerical approximation to the exact value Xðt0 þ DtÞ. Then the one step weak

second-order scheme is defined by (from Eqs. (14.2.7), (10.1.1), and (10.1.3) of [10]):

DYi ¼ DiDt þ 1
2
Dt2 _DDi

�
þ DjDi;j þ 1

2
B2Di;jj

�
þ Dt1=2 B

h
þ 1

2
Dtð _BBþ DjB;j þ 1

2
B2B;jjÞ

i
ni

þ 1
2
Dt3=2BDi;jnj þ 1

2
DtBB;jðninj þ VijÞ; ðB:2Þ

where all coefficients are evaluated at ðX0; t0Þ. As previously, ni are independent standardized Gaussians and

the two-point distributed random variables Vij are defined by (from Eqs. (14.2.8)–(14.2.10) of [10]):

P ðVij ¼ �1Þ ¼ 1
2

for i < j; ðB:3Þ

Vij ¼ �1 for i ¼ j; ðB:4Þ

Vij ¼ �Vji for i > j: ðB:5Þ
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