
Efficient Parallel Implementation of a Hybrid Finite-Volume/Particle

Method for the PDF Equations of Turbulent Reactive Flows

Renfeng Cao, David A. Caughey and Stephen B. Pope
Sibley School of Mechanical & Aerospace Engineering

Cornell University, Ithaca, NY 14853-750 USA

July 30, 2003

1 Introduction

Turbulent reacting flows are of great importance in modern society and occur frequently, for example, in
internal combustion engines, gas turbines, furnaces etc. The computational modelling of turbulent reacting
flows is widely used to aid understanding and control turbulent flames, to improve efficiency, and to reduce
pollutant emissions, reduce design costs and development times. However, turbulent combustion remains
one of the most complicated phenomena to describe and simulate using numerical tools.

Several types of turbulence and combustion models are used. Among these, PDF methods have the
advantages of representing convection and reaction exactly without modelling assumptions, and they have
been demonstrated to be an effective approach for calculating turbulent reactive flows. In PDF methods,
a modelled transport equation for the joint Probability Density Function (PDF) is solved numerically by
Monte Carlo methods. Monte Carlo methods are better suited than other numerical methods for this
purpose since the computational effort rises only linearly with the dimensionality of the PDF[9]. The
hybrid finite-volume(FV)/particle method is an attractive implementation which has less statistical and
bias error than previous stand-alone particle-mesh algorithms[3, 6, 7].

Parallel computation is an effective way to reduce turnaround time for computations using the Monte
Carlo/Particle methods and has been applied in several fields such as molecular simulation[2], plasma
particle-in-cell codes[4], and electromagnetic particle-in-cell codes[8] etc. However, relatively few papers
can be found about the parallel computation for PDF/Monte Carlo methods for turbulent combustion.
Pope[10] gives an overview of previous work on the implementation of parallel computation with Monte
Carlo methods. Three strategies: multiple independent simulations, particle partitioning and mesh work
partitioning are described in [10]. Raju[11, 12] successfully implemented a node-based Monte Carlo method
with structured/unstructured grids and parallel computing. The node-based method has several disadvan-
tages when compared with grid-free methods[9].

In this paper, an efficient parallel implementation of the hybrid finite-volume/particle method for
the PDF equations of the turbulent reactive flows is introduced. A method called domain partitioning of
particles is implemented.

The code has been tested by using a non-reacting case of the vitiated coflow combustor [1]. Results
about the speed-up performance in this test case are shown. Since in PDF/Monte Carlo methods the
particle properties are advanced independently in time, the speed-up performance of this code for the

1



particle part is very close to ideal. Finally, the speed-up performance with detailed chemistry calculation
is analyzed.

2 Domain partitioning of particles

The hybrid finite-volume(FV)/particle method is a combination of a finite-volume scheme and a Monte
Carlo/particle method. The finite-volume scheme is used to solve the Reynolds averaged Navier-Stokes
equations and the Monte Carlo/particle method is used to solve the modelled joint PDF transport equation.
The particle part obtains the mean velocity and pressure from the FV code and it in turn supplies the
Reynolds stresses, the scalar fluxes, and the reaction terms to the FV code[3, 6, 7].

The FV part and the particle part are relatively independent. When detailed chemistry is used in the
calculation, typically more than 95% of the CPU time is used in the particle part. The reason is that it is
computationally expensive to compute the change in composition due to reaction. At the same time, the
nature of the particle part also makes it easier to be parallelized than the FV part. Based on these two
observations, only the particle part is parallelized. The identical FV part is run on each processor while
the particles are distributed onto different processors.

There are two kinds of parallel strategies available in the previous grid-free PDF code. They are
multiple independent simulations and particle partitioning[10]. A new strategy named domain partitioning
of particles is presented here.

We consider a PDF simulation performed in parallel using N processors. The FV grid partitions
the solution domain into ncell cells. These cells are partitioned into N sub-domains, each consisting of
approximatively n∗cell ≡ ncell/N cells. Each sub-domain is assigned to a different processor. There are a
total of np particles, with each cell containing approximately npc ≡ np/ncell particles. At the beginning of
each time step, all of the particles in a cell are stored on the same processor, namely the processor which
is assigned to the sub-domain containing the cell. During the time step (on convection sub-steps) particles
can move from cell to cell and some may move to cells in different sub-domains. At the end of the time
step, message passing (using MPI) is performed to transfer particles that have moved from their initial
sub-domain to the processor corresponding to their current sub-domain.

In this domain partitioning of particles, all of the particles in a given cell are stored on the same
processor. Hence it is simple to implement particle interaction models (e.g., Curl’s model or EMST) on the
full ensemble of particles in a cell. In contrast, with particle partitioning, for a given cell, each processor has
a sub-ensemble of approximately npc/N particles on which particle interaction models are implemented.
This is a legitimate approach in that it converges as np tends to infinity, but it incurs a bias error that
is N times larger than that in a serial implementation or in domain partitioning of particles. The same
considerations apply to numerical operations (such as particle number and weight control) applied to the
ensemble of particles in a cell.

3 Test Cases and Resuts

The domain partitioning of particles was tested by using a non-reacting vitiated coflow turbulent jet flame,
which is developed by Cabra et al. The details about this flame can be found at [1]. Masri et al. [5] have
performed a PDF calculation of this flame using FLUENT.

The test was performed on the Velocity Cluster at Cornell Theory Center. A series of tests was
performed by changing the number of processors N (N=1, 2, 4, 8, 16) and the number of particles per cell
npc (npc=24 and 48). The CPU time per processor, T , for each test is shown in Fig. 1.

Fig.1(a) shows the CPU time per processor (T ) versus the number of processors (N). The CPU
time T tends to an asymptote as N increase. The reason is that only the particle part is parallelized in

2



0 5 10 15 20
400

600

800

1000

1200

1400

N 
T

0 0.2 0.4 0.6 0.8 1
400

600

800

1000

1200

1400

1/N

T

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

1/N

N
P

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
p

ar

(a) (b) 

(c) (d) 

1/N

^
Figure 1: Speed-up performance of the domain partitioning of particles algorithm. Square: npc=24; circle:
npc=48; solid line: least squares polynomial fit line; dash line: 45 degree line

the FV/particle code. Hence the asymptote corresponds to the time for the non-parallelized part of the
computation.

The simplest possible model for the dependence of T on N is:

T = Tnon + Tpar/N, (1)

where Tnon is the time spent on non-parallelized operations, and Tpar is the total time (summed over all
processors) spent on fully parallelized operations. To investigate this model, we plot T versus 1/N in
Fig.1(b). As may be seen, for each value of npc, the data closely conform to the straight-line behavior
implied by the model. The values of Tpar and Tnon are thus obtained from the slopes of the lines and
the intercepts with the coordinate, respectively. We thus obtain Tnon = 470 min., Tpar = 418 min. and
Tnon = 490 min., Tpar = 793 min. for npc = 24 and npc = 48, respectively.

Based on these observations, we extend the model for T to include the dependence on the number
of particles per cell npc. To a first approximation Tnon is independent of npc, whereas Tpar is linearly
proportional to npc. Hence the model is extended to

T = Tnon + Tp × npc × ncell/N

= Tp × ncell × (n0 + npc/N), (2)

where Tp = Tpar/(npc×ncell) is the CPU time per particle per processor for the parallelized work; and the
non-parallel work is expressed as Tnon = Tp × ncell × n0, where n0 ≡ Tnon/Tp is the “equivalent number
of particles” corresponding to the non-parallel work. From Fig. 1(b), we obtain n0 = 25 and n0 = 27 for
npc = 24 and npc = 48, respectively.

Then we define NP ≡ n0 + npc/N as the “total equivalent number of particles” which is shown in
Fig.1(c).

Finally, shown in Fig. 1(d) is the normalized CPU time spent on fully parallelized operations T̂par,
which is defined as T̂par ≡ Tpar/T .

3



4 Conclusions

The method of domain partitioning of particles has been successfully implemented and tested in a hybrid
FV/particle method for solving the PDF equations. Based on the results shown above, we arrive at the
following conclusions:

1. The number of particles has a small effect on the CPU time corresponding to the non-parallel part
Tnon.

2. The CPU time corresponding to the parallel part Tpar is mainly due to the particle calculations.

3. The speed-up performance for the particle part is very close to ideal in this test case.

4. When detailed chemistry is used, more than 95% of the CPU time is used for the particle calculations.
So substantial speed-up should be achieved with the present algorithm.

Acknowledgement

This work is supported by Air Force Office of Scientific Research grant F-49620-00-1-0171. The computa-
tions were conducted using the resources of the Cornell Theory Center, which receives funding from Cornell
University, New York State, federal agencies, foundations, and corporate partners.

References

[1] Cabra, R., T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis and R.S. Barlow, “Simultaneous Laser Raman-Rayleigh-
LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow”,
Proceedings of the Combustion Institute, 29, 1881-1888, 2002

[2] Carvalho, A.P., J.A.N.F. Gomes, and M.N.D.D. Cordeiro, “Parallel Implementation Of A Monte Carlo Molecular Simu-
lation Program”, J. Chem. Inf. Comput. Sci., 40, 588-592, 2000

[3] Jenny, P., S.B. Pope, M. Muradoglu And D.A. Caughey , “ A Hybrid Algorithm For The Joint Pdf Equation Of Turbulent
Reactive Flow” J. Comp. Phys., 166 , 281-252, 2001

[4] Lu, Q. and D. Cai,“Implementation Of Parallel Plasma Particle-In-Cell Codes On Pc Cluster”, Comp. Phys. Commun.,
135, 93-104, 2001

[5] Masri, A.R., R. Cao, S.B. Pope, and G.M. Goldin, “Pdf Calculations Of Turbulent Lifted Flames Of H2/N2 Issuing Into
A Vitiated Co-Flow ”, Combust. Theory Modelling, Submitted, 2003

[6] Muradoglu, M., P. Jenny, S.B. Pope And D.A. Caughey , “A Consistent Hybrid Finite-Volume/Particle Method For The
Pdf Equations Of Turbulent Reactive Flows”, J. Comp. Phys., 154 , 342-371,1999

[7] Muradoglu, M., S.B. Pope And D.A. Caughey, “ The Hybrid Method For The Pdf Equations Of Turbulent Reactive
Flows: Consistency Conditions And Correction Algorithms”, J. Comp. Phys., 172 , 841-878, 2001

[8] Plimpton, S.J., D.B. Seidel, M.F. Pasik, R.S. Coats, and G.R. Montry , “A Load-Balancing Algorithm For A Parallel
Electromagnetic Particle-In-Cell Code”, Comp. Phys. Commun., 152, 227-241,2003

[9] Pope, S.B., “Pdf Methods For Turbulent Reactive Flows”, Prog. Energy Combust. Sci., 11, 119-192, 1985

[10] Pope, S.B., “Pdf/Monte Carlo Methods For Turbulent Combustion And Their Implementation On Parallel Computers”,
Turbulence And Molecular Processes In Combustion, (Ed. T. Takeno), Elsevier., 51-62, 1993

[11] Raju, M.S., “Application Of Scalar Monte Carlo Probability Density Function Method For Turbulent Spray Flames”,
Numer. Heat Tr. Part A, 30, 753-777, 1996

[12] Raju, M.S., “Scalar Monte Carlo Pdf Computations Of Spray Flames Onunstructured Grids With Parallel Computing”,
Numer. Heat Tr. Part B, 35, 185-209, 1999

4


