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A model is proposed, valid in the laminar flamelet regime, for the surface-to-volume ratio
of a turbulent premixed flame. The new model is in a form suitable for incorporation into
an existing model of turbulent premixed combustion. Exact equations are derived which de-
scribe the dynamics of the constant-property surface representing the flame interface. Un-
known terms in the exact equations are modelled for the simplified case of constant-density
combustion in a specified turbulence field. Numerical solutions of the modelled equations
are carried out for a one-dimensional test case. Preliminary results indicate that the model
is capable of predicting effects present in turbulent flame propagation, and a parametric study

shows that correct trends are observed.

Introduction

Premixed turbulent combustion is of great tech-
nological importance particularly in spark-ignition
engines and in industrial safety. Experimental evi-
dence obtained both in laboratory flames and in
practical systems reveals that combustion usually
takes place in thin highly-wrinkled interfaces sep-
arating reactants from products. These interfaces
have the local structure of a strained laminar flame
and are known as laminar flamelets. There have been
several theoretical descriptions of combustion in the
laminar flamelet regime, notably the model for-
malism due to Bray, Moss and Libby' and the sto-
chastic flamelet approach of Pope and Cheng.? A
central problem in the modelling is the treatment
of the mean turbulent reaction rate. This quantity
depends on the local laminar flamelet burning rate
and on the flamelet surface area per unit volume.
The former has been modelled by the use of a lam-
inar flamelet library® to describe variations in the
local burning rate due to pressure, unburned tem-
perature and turbulent straining, while the latter
“has been treated in a stochastic form using the p.d.f.
approach,? or by a phenomenological balance equa-
tion.*® The stochastic approach offers advantages
of generality whereas a balance equation is more
easily added to an existing formulation. In pre-
mixed combustion the equatlons due to Franke and
Peters® and to Maistret et al.® are broadly compa-
rable in the inclusion of terms representing con-
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vection, diffusion and the effects of area production
and destruction due to straining and curvature.

The present work combines the benefits of the
stochastic modelling with a formulation that renders
it suitable for inclusion in a conventional finite-dif-
ference code. Exact equations are derived which
describe turbulent flame propagation in the laminar
flamelet regime. Terms which require modelling are
identified and models are obtained. Realisability is
guaranteed at all stages in the modelling. The use
of surface-averaging together with a Lagrangian
viewpoint makes dlrect comparison with previous
model equations®® difficult. The modelled equa-
tions are solved using a simple finite-difference
technique and plausible results are obtained for the
idealised case of a statistically-plane flame in con-
stant-density, stationary, isotropic turbulence. Para-
metric studies are carried out and qualitative com-
parisons made with the results of previous modelling
and with experimental observation.

Theory

For the derivation of exact equations we consider
the case of variable-density premixed turbulent
combustion. Let ¢(x, t) be a reaction progress vari-
able defined to take the value zero in reactants and
unity in products. Precise definitions of ¢ in terms
of species mass fractions are discussed elsewhere.?
Let c* be a specified fixed value of ¢, for example
the value of ¢ at the inflection point of an un-
strained plane laminar flame. The mean volume frac-
tion of reactants is then given by b(x, t) = Pr{c(x, 1)
< ¢*}. Note that in the terminology of the Bray-
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Moss-Libby model the'mean progress variable is ¢
= (c) = 1 — b. The flame surface S(t) is defined
by all points X such that ¢(X, #) = ¢* and is there-
fore a constant-property surface. In previous work®
the flame surface has been defined as a propagating
surface, but the present definition has the advan-
tages that it is not necessarily limited to thin flames
and that technical problems associated with the oc-
currence of cusps and self-intersections are avoided.
Since c(x, t) is governed by a convection-reaction-
diffusion equation, ¢ is smooth and so the surface
S is regular except at a finite number of critical
points (at which ¢(x, t) = c*, |V¢| = 0). We assume
that these critical points have a negligible influence
on the statistics considered and hence discuss them
no further.

The surface S has an expected surface area per
unit volume 3(x, ¢) whose precise definition is pre-
sented by Pope,” and at each point X on the sur-
face we define the unit normal N(= —Vc¢/|V(|,
negative so that N points into the reactants), the
mean curvature H and the local propagation speed
w. Note that if the surface behaves locally like an
unstrained 0plame laminar flame then p(c = c¢*)jw =
plc = 0)S;. The possibility exists for w to be a
function of the local state variables and of the local
turbulent flow field, but for the present work we
take w to be a predefined constant.

An equation for the mean volume fraction of
reactants b may be derived by considering an in-
finitesimal volume 8V containing an infinitesimal area
SA of the surface S (see Fig. 1). The mean area per
unit volume and the surface mean of any quantity
Q are given by

3 = (84)/8V
(Q)s = (Q34)/28V (1

Defining an indicator function I(x, #) taking the value
unity in reactants (¢ < ¢*) and zero in products (¢
> ¢*) we take a volume average over 8V and de-
note the result by i. Then b = (i). By geometry it
is clear that

=4

i
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FIG. 1. The geometry of the laminar flamelet sur-
face.
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where X is the local velocity of the surface given
by the sum of the local convection velocity U and
the local propagation velocity wN. Thus the equa-
tion for b becomes

b .

Py (X - N)s ®
An important consequence of this equation follows
by introducing the Reynolds decomposition U = (o
+ u where u is the fluctuating turbulent velocity.
Then X = (U) + u + wN. Substituting in (3) we
have after rearrangement

a
= (Vb - IM) - 3(u-N), - IW, (4

where

Mz, 1) = (N)s, ()
and

Wiz, 1) = (w), ®)

Every term in this equation is Galilean invariant
except for the first term on the RHS, which in con-
sequence must vanish. Therefore,

M =Vb/3, v

and we have obtained an exact expression for the
surface-mean unit normal to S. This expression for
M (which can also be obtained by purely geometric
means) is a generalisation of the result obtained by
Masuya. 1

The exact equation for 3 has been derived
elsewhere” and may be stated as

% + V- (3(X),) = 2<(5ij = NiN) a_x,> )

ij

Defining n; = M;M; + 1/36,(1 — M -M) we may
decompose the RHS of (8) as

oxX;
<(55' - NiNj) 6—x]>s
a<xi>s

= (8 — ny) —
%

+aér—2WH (9)

This equation defines the terms d¢r — 2WH which
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are to be modelled. In the isotropic case (for which
M =0, n; = 1/38;) we obtain

R . aU;
dr = d =(— (8; — N:N;)
9 s

Xj

(10)

which is the mean strain rate in the tangent plane
of S, and

(11

which is the propagation-weighted mean curvature.

The mean surface velocity is defined to be V =
(U) + (u)s + WM, and we define the convective
derivative at the surface as

D ]
(—) =—+V-V (12)
Dt/, ot
Thus the exact equation for 3 becomes
D a<xi)s A
— ] 3= Ny +dr — 2WH (13)
Dt s ax/

In order to express the equations for b and 3 in
the same form, we make the assumptions that fluc-
tuations in N are uncorrelated with those in U and
w:

U N)s = W (N)s = WM

(wN)s = (w)s N)s = WM (14)

and we define

a=1-MM

(15)

Finally, the equations for b and 3, are stated as

D
(—) b= —a3W
Dt/

(_) ln 2 = —nij b
Dt s axj

which are supplemented by Eq. (7). Comparison of
these equations with those arising from the phe-
nomenological approach®® is rendered difficult by
the present exploitation of surface-related quan-
tities. Since the present equations are exact a cor-
respondence of modelled terms must exist and this
is the subject of current investigation.

The form of Eq. (16) is particularly useful in ad-
dressing questions of realisability and other exact

+dr— 2WH  (16)

constraints. The requirement 3 = 0 is clearly sat- -

isfied provided only that the RHS of Eq. (16) is
finite: The condition b = 0 is discussed below. More
subtle is the requirement |[M| < 1, which implies
a = 0. For the simple case of an expanding spher-
ical laminar flame this condition would be violated
if the term in V were omitted from Eq. (16). The
same term is needed to account correctly for the
effect of rapid mean dilatation on 2. An analysis of
the equation for a (deduced from those for b and
3,) shows that a necessary and sufficient condition
for the satisfaction of M| = 1 is

lin(l)(af —9WH) =0 an

Modelling

For convenience in the initial modelling we con-
sider constant-density combustion in a specified
turbulence field. Several quantities in the exact
equations are not known a priori and hence require
modelling. The first of these is {(u,) which appears
in V and is the surface-averaged turbulent velocity.
This quantity may be interpreted as the turbulent
flux of surface area for which a standard gradient-
transport model is

(u)y=—0o7VIn3 (18)
where ovr is the usual turbulent exchange coeffi-
cient given by C,k%/e. If the gradient-transport ap-
proach proves inadequate it is possible to solve a
balance equation for (u)s, as is already done for other
turbulent fluxes in second-order closure models such
as Bray-Moss-Libby.

For a material surface in isotropic turbulence (a
= 1) the straining term dr is given by dr = C,/
7,, where C4 has the value 0.28 obtained from di-
rect numerical simulations of turbulence,® and 7, is
the Kolmogorov time scale. For a fixed surface in
isotropic turbulence (@ = 0) we have d; = 0. We
take the simplest model consistent with these lim-
iting cases, namely,

ﬁT = CAC!/T,,. (19)
It can be expected that dy is a decreasing function
of w/u,, where u, is the Kolmogorov velocity scale.®
Such a dependence can in future be incorporated,
once it has been quantified by direct numerical
simulation. X

The curvature term H is difficult to model by
physical arguments, since its dependence on lami-
nar propagation speed and on small-scale turbulent
effects has yet to be investigated. Instabilities in-
herent in laminar propagation are also likely to be
important in determining the curvature of the flame
surface, particularly at small values of Reynolds
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2,4,6

number. Previously the term has been mo-

delled by
N w
2WH = CX — (20)

For the homogeneous isotropic case, the realisabil-
ity condition b = 0 requires Cy =< 1 (as b tends
to zero). Pope and Cheng® took Cy; = 2/3 which
causes b to reach zero in finite time; whereas the
choice Cy = 1 causes b to reach zero exponentially
with time, and hence b remains strictly positive.
Here we argue that b should be strictly positive
but that it should tend to zero more rapidly than
exponentially. This is achieved by the specification

Cy= a{l - % a- exp(—Aﬁ))}, @1)

where R = b/(SWr,) is the ratio of the flame-sheet
to the turbulence time scales, and the constant A
= 10. The factor a in this specification is intro-
duced to meet the realisability requirement

lim,_o(é;r — 2WH) = 0 mentioned above: it plays -

the role of the “orientation factor” of the stochastic
flamelet model.2

Numerical Method

The model Eq. (16) together with the models de-
tailed above are to be solved numerically by a finite
difference method (as opposed to a Monte-Carlo
method) with a view to future incorporation into a
turbulent combustion code. The model problem is
one-dimensional with open boundaries and a pre-
scribed starting condition. The objective of the nu-
merical calculation is to allow the turbulent flame
profile to evolve from its starting conditions to a
freely-propagating solution. Thus it is necessary to
choose a numerical method which will capture
faithfully the details of the propagation, and whose
properties will not mask the nature of the physics.
The need to maximise the dynamic range of the
variables b and 3 leads to transformed equations
for the logarithms of these quantities. Spatial dis-
cretisation was by centred differencing in order to
preserve second-order-accuracy and to avoid any
purely numerical diffusion. This is particularly im-
portant in a problem where diffusive processes are
likely to dominate the solution at least locally. Eu-
ler time differencing was employed for simplicity,
and a purely explicit algorithm was adopted. Sta-
bility of the coupled system was assured by the
presence of sufficient natural diffusion in the equa-
tion for 3, there being no diffusive terms in the
equation for b. End conditions for the centred dif-
ferences were obtained by finding analytic solutions

for b at the trailing edge and for 3 at the leading
edge of the flame. A moving, variable width com-
putational domain was adopted with nodes being
added to the leading edge of the domain to accom-
modate the flame profile as it advanced. Nodes were
removed from the trailing edge as necessary to re-
main within computational bounds. The use of an
explicit scheme imposed restrictions on the time-
step to ensure stability. A typical value of the time
step proved to be about 1075 for a spatial step size
of 1072 (in normalised coordinates), starting with a
domain of 100 nodes, for which step size indepen-
dent solutions were obtained and a sufficient mar-
gin of stability is guaranteed. The limitations of the
finite difference approach in contrast to the Monte-
Carlo method do not allow the treatment of sharp
starting profiles representing a near-laminar flame
but the present study centres on steady propaga-
tion rather than on the details of the evolution from
the initial conditions. Parametric studies of the nu-
merical parameters have revealed no serious path-
ologies. The method was coded in FORTRAN on
a DECstation 3100 RISC Workstation and a typical
run of 50000 time steps occupies about 5 minutes
CPU.

Results and Discussion

The model code was run for a one-dimensional
test case described by Pope and Cheng.? At time

= 0 the flame was assumed to exist in a field of
statistically-stationary homogeneous isotropic tur-
bulence with zero mean flow and no density vari-
ations. The initial profile was taken to be a Gaus-
sian for % and an error function for b corresponding
to M = 1. The Taylor-scale Reynolds number was
40 and the laminar flame speed W was specified in
the range 0.01 to 1.0. The turbulent kinetic energy
k was taken as unity, as was the turbulent kinetic
energy dissipation rate €. This produced an integral
time scale of unity and an rms turbulence velocity
u’ = V2/3. The Kolmogorov time scale T, was
0.064.

Results for this case are shown as a distance-time
plot in Fig. 2a. for three values of the mean reac-
tant volume fraction b. It is evident that the flame
quickly settles down to a steady propagation speed
and a self-preserving structure. The flame profiles
in terms of the surface-to-volume ratio 3, are shown
in Fig. 2b for selected times. It is clear that the
profile grows rapidly as the flame area increases,
developing some asymmetry towards the trailing
edge. This is due to the influence of area reduction
due to curvature as modeled by the expression, (20)
and may be compared with the effect observed in
the case of the stochastic model.? The total flame
area is plotted in Fig. 2c as a function of time. There
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Fi1c. 2. Results for a typical case (Taylor-scale
Reynolds number Re, = 40, laminar flame speed
W = 1.0):

a) Distance-time plot showing the evolution to

steady propagation. The three curves correspond

to b = 0.1 (upper), b = 0.5 and b = 0.9.

b) Flame profiles taken at unit time intervals

showing the change of shape and scale with time.

¢) Total flame area as a function of time showing
ne rapid early increase.
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is a rapid growth in area for early times followed
by a slow fall back to a steady value.

Similar results are plotted in Fig. 3 for the case
of laminar flame speed equal to W = 0.01. Similar
qualitative behaviour is observed, but the flame takes
longer to evolve to a steady state from the same
starting profiles and the final flame speed is lower.
Area growth is much more rapid to a considerably
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Fic. 3. Results as for Fig. 2 but with a laminar
flame speed W = 0.01.
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higher peak, with a slower fall back to the final
value. Comparison with the stochastic flamelet
model? reveals similar trends but considerably
smaller (by 50-100%) numerical values. This is to
be expected in view of the preliminary nature of
the present model.

Figure 4a displays the effect on the turbulent
propagation speed of varying the laminar flame speed
with the Taylor-scale Reynolds number held con-
stant. The results are satisfactory showing a varia-
tion in the appropriate sense.® There appears to be
a tendency for the turbulent flame speed to asymp-
tote to a constant value for small W and this is the
subject of further investigation. Analysis of the model
equations in this region shows that there is a finite
value for up/u’ in the limit as W/u' — 0.

The effect of Reynolds number is explored in the
same way in Fig. 4b. Here the laminar flame speed
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Fic. 4. Dependencies of the turbulent flame
speed:

a) Turbulent flame speed ur as a function of lam-
inar flame speed W for a Taylor-scale Reynolds
number Re, = 40.

b) Turbulent flame speed u; as a function of Tay-
lor-scale Reynolds number Re, for laminar flame
speed W = 1.0.

TURBULENT COMBUSTION

is held constant at W = 1.0 and the Reynolds num-
ber Re, varies from 20 to 500. Larger Reynolds
numbers indicate more intense turbulence with
greater wrinkling of the flame at all scales. Thus
the surface-to-volume ratio may be expected to in-
crease producing more rapid combustion.®

Conclusions

A new model has been proposed for the propa-
gation of premixed turbulent flames in the laminar
flamelet regime. The model treats the variation of
flame area as a primary quantity of interest and
permits the calculation of the mean turbulent re-
action rate in a natural manner. Exact equations have
been derived and realisability conditions have been
identified. Following mild simplifying assumptions,
modelling of unknown terms in the equations has
followed previous practice as far as possible. Nu-
merical solutions have been obtained for a one-di-
mensional test problem with homogeneous isotropic
turbulence and zero heat release, and the results
are plausible and compare well with previous sto-
chastic modelling. Further investigation of the pa-
rameter space is under way. The feasibility of the
approach has been demonstrated and will be ex-
ploited by incorporation of the model in a more
conventional (Bray-Moss-Libby type) turbulent
combustion code. Density variations are catered for
in the exact equations and will be incorporated in
the modelling.

Nomenclature

o

Constant = 10.0

Turbulent strain rate

Mean volume fraction of reactants
Constant = 0.28

See Eqn. (20)

Constant = 0.09

Reaction progress variable
Mean curvature of surface S
An indicator function

Volume average of I

Turbulent kinetic energy
Surface mean normal to S

Unit normal to S

See Eqn. (9)

A general quantity

Ratio of turbulence time scales
Taylor scale Reynolds number
The flame surface

Unstrained laminar flame speed
Time

Local fluid velocity

Fluctuating turbulent velocity
RMS fluctuating turbulent velocity
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Kolmogorov velocity

Local surface-mean velocity
Surface mean of w

Local propagation speed of §
Position vector of a point on S
Position vector of any point

R<Eg gEi]§

Greek:

a See Eqn. (15)

8  Kronecker delta

8A Infinitesimal area

8V Infinitesimal volume

€  Turbulence energy dissipation rate
vr Turbulent diffusivity

3. Expected surface-to-volume ratio
7, Integral time scale

7, Kolmogorov time scale

Subscripts:

i,j Tensor suffices
s Surface-averaged quantity
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