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Calculations of Premixed Turbulent Flames by PDF Methods
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Idealized premixed turbulent flames are studied using probability density function (pdf) methods. A modeled
transport equation for the joint pdf of velocity and the reaction progress variable is solved by a Monte Carlo method.
Detailed calculations of flame.properties and flow statistics, including the flame speed, the scalar flux, the turbulence
intensities, the kinetic energy budget and conditional statistics are presented for different density ratios. Results are
compared with the limited available experimental data and the calculations based on the Bray-Moss-Libby (BML)
model. Compared to the BML model, the present pdf approach has several advantages: fewer processes have to be
modeled, more information can be extracted from the solution, and the method is directly applicable to

multidimensional flames.

INTRODUCTION

The aerothermochemistry of turbulent combus-
tion—the complex interaction between several
interconnected processes of reaction, diffusion,
and volume expansion occurring in a turbulent
flow field—is one of the less understood aspects of
turbulent reacting flows [1]. Reaction is influenced
by the turbulence, which in turn is significantly
affected by the reaction and the accompanying
volume expansion.

The present work is concerned with a class of
turbulent reacting flows, namely, premixed turbu-
lent flames. Idealized premixed turbulent flames
are studied using probability density function (pdf)
methods [2]. Premixed turbulent flames are im-
portant because of their occurrence in spark
ignition engines [3, 4], jet engines with reheat, and
in industry [S]. Premixed turbulent flames have
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been studied theoretically with some success using
conventional turbulence models and approaches,
prominent among which is the Bray-Moss-Libby
(BML) model [6, 7]. The present work is a sequel
to the pdf calculations of idealized constant-
density premixed turbulent flames by Pope and
Anand [8]. The latter work was concerned with the
influence of the microscale structure of the flame
on macroscale properties—the turbulent flame
speed, for example. The present work is con-
cerned with the effect of variable density on the
macroscale properties of the flame.

The flame under consideration is an idealized

'premixed turbulent flame which is statistically

stationary and one-dimensional, and propagates
through high-Reynolds-number turbulence which
is nondecaying, homogeneous, and isotropic up-
stream of the flame. The flame is studied with
density ratio (R)—the ratio of the unburned gas
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density to the burned gas density—as a parameter.
A one-step reaction is assumed, adopting the
Bray—Moss model for premixed flames [9], so
that the instantaneous thermochemical state is
uniquely related to a single scalar variable, the
reaction progress variable c(x, 7). (The progress
variable is zero in the unburned reactants and unity
in the burned products.) The theoretical approach
used in the present study is distinctly different
from conventional presumed-pdf approaches in
that the form of the pdf of the scalar ¢ is not
assumed; rather the transport equation for the joint
pdf of the velocities V(x, 7) and the progress
variable ¢(x, ?) is solved to obtain the joint pdf [2,
10]. This approach offers important advantages
over conventional turbulence models for treating
turbulent reacting flows since reaction and convec-
tion (by mean and fluctuating velocities) are
treated exactly in the pdf transport equation and
need not be modeled. The mean pressure gradient
and the variable density also appear in closed
form. In addition, the joint pdf contains a more
complete representation of the flow field than its
first few moments only. The terms in the pdf
equation representing the effects of molecular
transport and pressure fluctuations need to be
modeled. We use, for these terms, models that
have been developed and tested for turbulent shear
flows [2, 11, 12]. The pdf transport equation is
then solved using a Monte Carlo method [2, 10].

The flame properties calculated in the present
study are the turbulent flame speed (St); the flame
thickness (61); the profiles of the mean and
variance of the progress variable; and the profiles
of mean velocity, scalar flux, mean pressure
gradient, and turbulent intensities through the
flame. The balance of the various terms in the
streamwise turbulent intensity equation is studied
to understand turbulence production in the flame.
The conditional mean velocities and other statistics
(conditioned on the fluid being unburned or
burned) are also calculated.

The present approach has certain additional
advantages over the BML approach. The turbulent
flame speed and the structure of the flame (spatial
variation of the mean of the progress variable) are
determined as part of the solution in the present
approach. In the BML theory, the flame speed is
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required as an input to the calculations and the
spatial structure of the flame is not resolved
without requiring additional modeling.

Experimental data for strictly one-dimensional
premixed turbulent flames are unavailable since
such flames are idealizations and difficult to
realize in practice. Inasmuch as it considers simple
flames, the present study is viewed as a first step to
calculating more realizable flames like the V-
flame, for which abundant experimental data exist.
Following Bray et al. [6] and Libby [7], we
compare our results with the limited experimental
data of Moss [14] for a Bunsen flame interpreted
to correspond to 1-D (one-dimensional) flames [6,
7] with the understanding that small errors and
ambiguities in the interpretation can cause large
uncertainties in the transformed data. The results
from the present study are primarily compared
with those from the BML theory [6, 7].

The next section describes the governing equa-
tions for the 1-D premixed turbulent flame and the
modeling of the pdf transport equation. The
modeling in the present study and the BML theory
are compared in the third section. Results are
reported for density ratios between 1 and 10 and
discussed in the fourth section.

THEORY AND MODELING

The schematic diagram of an idealized 1-D pre-
mixed turbulent flame in steady state is shown in
Fig. 1. All mean quantities are invariant with time
in a coordinate system fixed to the flame. Further,
all mean quantities vary only in one direction, the
x-direction. The flow, as shown in Fig. 1, is along
the x-direction, which is normal to the time-
averaged flame sheet. However, the analysis is
valid even for an ‘‘oblique’’ flame, i.e., when the
flow makes an angle with the x-direction, as long
as the flame is unconfined and the streamlines are
unconstrained [7, 13].

In the idealized ‘‘normal’’ flame under consid-
eration (Fig. 1), premixed reactants with density
py flow into an infinite planar turbulent flame with
mean velocity U, which is, by definition, the
turbulent flame speed St. The turbulence in the
incoming reactant stream is (by assumption) iso-
tropic and nondecaying with turbulent kinetic
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Fig. 1. Schematic diagram of a steady 1-D premixed turbu-
lent flame. (Note: 1 + v = R = p,/py.)

energy ko (=3uy%/2, where u, is the upstream
rms velocity fluctuation). The reactants are con-
verted to products with accompanied heat release
upon passage through the flame. The density falls
and the resultant volume expansion causes the
flow to accelerate. In the fully burned region
downstream of the flame, the density is pp, the
mean velocity normal to the flame is U, and the
turbulence is anisotropic with kinetic energy k.

The principal independent variables are position
X = (X, X3, X3) = (x, ¥, 2) and time 7. The
principal dependent variables are the progress
variable c(x, f) and the velocity U(x, #) with
components (U, U,, U3) = (u, v, w).

In presenting the mean conservation and balance
equations, we use Favre averages (density
weighted averages) since their use greatly simpli-
fies these equations for variable density flows
[15]. A general variable g is decomposed into its
(Favre) mean { and fluctuation q”:

q={pq)/{p)+q" =G+q", 1

where ( ) indicates the conventional mean. It
should be noted that while the Favre mean of ¢” is
Zero ((f” = 0), the conventional mean is generally
not ((g”) # 0). Mostly, the Favre decomposition
is used for all quantities except pressure p, which
is decomposed into its conventional mean (p) and
fluctuation p’.

The conservation equations (unaveraged) for
mass and j-direction momentum are

dp 0
%, 9 uy=o @
ot T ax, P

and

2 wup+ L U= -2 0,1
at P e P Toaxg o, 27
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where k is the turbulent kinetic energy, e is the
rate of viscous dissipation of k, and 7;; is the sum
of the viscous and viscous-diffusive stress tensors.
The precise form of 7;; is inconsequential in the
present study (as well as BML theory) since its
effects are modeled. The last term in Eq. (3)
represents a source of kinetic energy that exactly
balances the energy loss due to viscous dissipa-
tion. (u” rather than U” is used for fluctuating
velocity.) This term is nonphysical and has been
added to keep the turbulence from decaying due to
viscous dissipation. It can be shown [13] that, in
the idealized situation considered here, the flame
is unstable in decaying upstream turbulence. (If a
flame stabilized in decaying turbulence, say in
grid-generated turbulence, is perturbed by a dis-
placement toward the grid, the flame encounters a
level of turbulence greater than at its previous
location, which causes an increase in the flame
speed and further acceleration of the flame toward
the grid. In the idealized situation considered here,
this process will continue until the flame finally
collides with the grid. In practice, the flame may
be stabilized near the grid as a result of heat loss to
the surroundings. A similar analysis shows that if
the flame is displaced away from the grid, the
flame speed decreases continuously, resulting in
the blow-off of the flame. From the above-
consideration it can be seen that the flame is
neutrally stable in nondecaying upstream turbu-
lence. The inclusion of the last term in Eq. (3) is
consistent with the assumption of no viscous
dissipation outside the flame, made in the BML
model [6, 7]. The term has no contribution to the
mean momentum equation, and the contributions
due to viscous dissipation to the kinetic energy and
the scalar flux budgets within the flame are small
in comparison to the other terms in the budgets, as
seen from the results of Bray et al. [6].) The ratio
k/e is taken to be the characteristic turbulent time
scale (7), where k is given by J’”\u,/” /2 (with
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implied sum over all three components for re-
peated indices).

The conservation equation for the scalar c(x, )
is

d
= (pC) +

Uiey= - 221 ps @)
ox (oUic)= o pS(c),

where J; is the diffusive mass flux of ¢ due to
molecular transport and S(c) is the rate of change
of ¢ due to reaction and is taken to be

S(c)=S8*(c)/m, ®)

where 7R is the reaction time scale. As in the
previous work [8] the normalized reaction rate
S*(c) is taken to be the Arrehenius expression

5%(c)=6.11x107¢(1 —c)
x exp[ — 30,000/(300 + 1800c)], 6)

which corresponds to an activation temperature of
30,000K and unburned and fully burned tempera-
tures of 300K and 1800K, respectively. Again, the
precise form of J; is not considered since molecu-
lar transport is modeled in the present study as
well as in the BML theory.

The joint pdf f(V, C; x, t) [or f(V, C) to be
brief] is defined to be the probability density at a
given X and ¢ of the simultaneous events U(x, ¢) =
V and c(x, ©) = C, where V and C are
independent velocity and composition variables.
As written, the pdf f(V, C) is a function of eight
independent variables—three velocity variables
Vi, Va2, V3, the composition variable C, three
spatial variables, and time. But, for the statisti-
cally one-dimensional and stationary flame under
consideration, three independent variables can be
eliminated so that

SV, C; x, )=f(V, C; x). @)

For variable-density flows it is more natural to
consider the mass density function (mdf) rather
than the pdf [2]. The mdf (F'), simplified for a
statistically 1-D case, is defined by

F(V, C, x; )=p(C)f(V, C; x, 1). ®

The mean of any quantity Q(U, ¢) can be
evaluated from the following integral over the
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velocity-composition (V-C) space:
(0)0W, o={| o, ©)
xF(V, C, x; t) dV dC. )

The exact evolution equation for the pdf (rather
the mdf) can be derived from Eqgs. (2)-(4) using
methods described in [2, 10]:

OF _OF 1 a(p) oF

_+ i
ot ax; p(C) dx; aV;

3 1 9
+— [S(C)Fl+— — (FV;
ac SO+ 5y, (FVD

=—i[<A (x, )|V, C>F]

av;
-—[O(x, )|V, C>F], 10
ac[< (x, 1) ] (10
where
d7;; op’
A;i(x, t =Y
pA;( ) ox; 0x;

aJ;
and  pO(x, )= -—.
0x;
[For any quantity Q, (Q|V, C) denotes the
expectation conditional upon the event U(x, 7) =
V and c(x, #) = C.] The terms on the left-hand
side of Eq. (10) are exact—p and S are known
functions in C-space and the gradient of (p) can be
determined from the mdf (see next section). The
terms represent, respectively, the change in F with
time, transport in physical space (convection),
transport in velocity space by the mean pressure
gradient, transport in composition space by reac-
tion, and the addition of turbulent kinetic energy.
All the above processes are thereby treated with-
out approximation. The terms on the right-hand
side of Eq. (10) contain, as unknowns, conditional
expectations that have to be modeled.

Before discussing the modeling, certain flow
parameters and related assumptions about the flow
are discussed. The flow conditions upstream of the
flame were described earlier in this section. The
characteristic scales of turbulence in the upstream
flow are the time scale 7 = k/e, the velocity scale
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ug, and the length scale /y = u 7, (The time scale
7 is assumed constant through the flame. Justifica-
tion for this assumption comes from the tentative
results of the study by Bray et al. [16] which show
that 7 is constant through the flame.) The charac-
teristic time scale for reaction is 7. From these
scales and from the kinematic viscosity », two
dimensionless parameters can be formed. We take
these to be the (turbulent) Reynolds number Re =
uyly/v and the Damkohler number Da = 7/7x.
Another important parameter is the density ratio
R(=py/py). For practical flames, R lies in the
range 5-10. Density ratios between 1 and 10 are
investigated in the present study. The Reynolds
number is assumed to be arbitrarily large, so that
models developed for high Reynolds number can
be applied. According to the modeled equations,
the exact value of Re does not affect the results
except to determine the type of combustion. The
Damkohler number, in conjunction with the Rey-
nolds number, deterraines the type of combustion
and hence the modeling used [8].

The modeling of the molecular diffusion term is
influenced by the type of combustion [8]. Differ-
ent regimes of premixed turbulent combustion—in
particular, the extreme regimes of flamelet and
distributed combustion—are discussed in Refs. [8]
and [13]. Flamelet combustion, in which combus-
tion occurs in thin sheets which locally have the
properties of undisturbed laminar flames, occurs
when Re!’? < Da < Re (i.e., when §, < 7,
where ¢, is the laminar flame thickness and 7 is
the upstream Kolmogorov length scale). Distrib-
uted combustion, in which reaction is distributed
more uniformly in space and is not necessarily
accompanied by steep gradients of ¢, occurs when
Da < Re'? (i.e., when 7y < §)). In the present
study, only the flamelet regime is considered since
there is some experimental evidence to suggest
that combustion in practical flames is closer to the
flamelet regime than to the distributed regime
(e.g., [17]). In the case of flamelet combustion,
the modeling is such [8] that the molecular
diffusion term in Eq. (10), involving the condi-
tional expectation of O, is modeled by the stochas-
tic mixing model [11] while the reaction rate S(C)
is replaced by an effective rate #(C) derived from
the structure of a laminar flame [13]. (It should be

noted that A(C) exactly accounts for contributions
from both S(C) and © within the bulk of the
laminar flamelet. The mixing model, whose con-
tribution is negligible in the bulk of the flamelet, is
required only to account for the effect of molecu-
lar diffusion at the edges (near c = O and ¢ = 1).
For large Damkohler numbers, it is seen [8] that
h(C) is large enough so that once the fluid attains
(by turbulent mixing) a value of ¢ greater than zero
(of the order 1/Da), reaction proceeds rapidly,
and a value close to ¢ = 1 is reached almost
instantaneously. This behavior, which corres-
ponds to the asymptote Da — oo, is approached
even at moderate Damkohler numbers (Da > 20).
The resulting pdf of ¢, f.(C), is a double-delta
function distribution with delta functions of
strengths Cat C = 1 and (1 — é) at C = 0. The
resulting variance of the scalar (’(?/’2) is¢é(1 — o).
In the present study, the Damkohler number is
assumed to be arbitrarily large, which is consistent
with the assumption of fast chemistry in the BML
theory. (Calculations with finite Da can be per-
formed with the present approach [8, 13]. Also,
distributed combustion can be computed by just
retaining S(C) instead of replacing it by A(C) [8,
13].)

The effects of viscous dissipation [due to 7; in
Eq. (10)] are modeled using the improved stochas-
tic mixing model [11] for the velocities. The effect
of the fluctuating pressure gradient [due to gradi-
ent of p’ in Eq. (10)] is modeled by the stochastic
reorientation model [2, 12]. The combined effect
of the stochastic models on the Reynolds stresses
is equivalent to that of Rotta’s return-to-isotropy
model [18], which is an acceptable model for
constant-density flows. (The effect of the mixing
model is dissipative, while the reorientation model
redistributes energy among the various compo-
nents.) In constant-density flows without mean
velocity gradients, the fluctuating pressure field is
solely due to turbulence and is termed ‘‘slow’’
pressure. Additional sources of pressure fluctua-
tions arise in variable-density flows due to density
gradients, velocity gradients, the velocity diver-
gence, and the viscous shear stresses. These terms
may be important and may have significant influ-
ence on quantities such as the turbulence kinetic

- energy, scalar flux, etc., though there is a lack of
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evidence to draw firm conclusions. Usually, the
effects of the fluctuating pressure gradient are
neglected, as in the BML theory [6, 7], with the
expectation that the effects of the mean pressure
gradient are dominant. In the present study,
however, only the effects of the ‘‘slow’’ pressure
(due to turbulence alone) are considered by the
stochastic reorientation model, and the additional
effects are neglected.

Starting from an almost arbitrary initial condi-
tion, the modeled mdf equation is solved by a
Monte Carlo method until steady state is reached
[this is the reason for which the time rate of change
term in Eq. (10) is retained]. The details of the
modeling and the Monte Carlo method can be
found in Ref. [13].

COMPARISON WITH THE BML
MODELING

The set of conservation and balance equations used
in the BML theory are the mean continuity, x-
momentum and scalar equations, and the equations
for u”? (=u;?) and u”c” . First, the effect of the
modeling in the present study on these equations is
discussed. The modeling of these equations in the
BML theory is then discussed and compared with
that in the present study.

The modeling in the present study does not
directly affect the mean conservation equations at
steady-state, derived from Egs. (2)-(4) with the
assumption of high Reynolds number. They are

d (p)i)=0 11
E(p)’u)— , (11
_‘i 32 4 7,7 2) __d(p)

p [o)(@?+u"?)]= ol (12)
d e —

p Ue)(@c+u”c”)1=(p)S(c). (13)
x N

The mean continuity equation [Eq. (11)] implies
that (p)# is a constant through the flame and, by
definition, the constant is equal to p,St:

(p)d=constant = p,St. (14)

A consequence of the single scalar formulation
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is that the density is uniquely calculated from the
reaction progress variable:

and (p) =p,/(1+7¢), (15)

where y = R — 1. (The quantity v is denoted by 7
and is referred to as the heat release parameter in
the BML studies.) From Eqs. (14) and (15) it can
be seen that the mean streamwise velocity (&) is
related to the mean progress variable (€) by the
following relationship:

= (pu/{p))St=(1+7C)Sr. (16)

[Note: Uy, = RU, = RSy from Eq. (16).]
The equation for the mean pressure gradient
then becomes [see Eq. (12)]
d dac

d{p) __“ T 2 4
—Jx__ dx {p)u"?)—~p,Sr dx a7

p=p./(1+7c)

The right-hand side of Eq. (17) is known from
the mdf and the flame speed calculated in the
Monte Carlo method [13]. Thus, the mean pres-
sure gradient is a known quantity during the
computations.

The effect of the modeling is apparent in the
balance equations for 4”2 and u”"¢” . The modeled
equations for these quantities, which can be
derived from Eq. (10) using methods described in
Ref. [2], are

i — e dd
7 + ”3+2 ”2
(o)d T d—x<p>u (o)u e
d{p) u"?
+2(u") ———(p) —
dx T

= —(p)C " P~ 2k/3)/ 7~ (p) Cout "/,
(18)

d —~— du
(p)i — u"e” +— (p)c"u"2+(p)u"c” —
Ix dx dx

o (e D) 73
b dx

—(p)u"c" /21
= —(p)Ceu"¢" /7. (19)
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All the terms on the left-hand side in Egs. (18) and
(19) are exact, and the terms on the right-hand side
are modeled. The terms on the right-hand side in
Eq. (18) are due, respectively, to the stochastic
reorientation and mixing models for the velocities.
The term on the right-hand side of Eq. (19) is due
to the combined effect of the stochastic models for
the velocities and the scalar c¢. By definition, the
value of C, is equal to unity. With C, = 1, the last
terms on the left- and right-hand sides cancel each
other in Eq. (18). The model constant Cy is
related to the Rotta constant Cy [18] by Cy = Cy
— 1, and the value Cx = 1.5 suggested by
Launder et al. [19] is used in the present study.
Following previous studies [8, 20], a value C; =
3.1 is used. The quantities (#”) and (c”) in Egs.
(18) and (19) are known in terms of ¢”2 and u”¢”
from the definition of the Favre averages and from
Eq. (15):

(u"y=yu"c” /(1 +¢)
and (") =vc"2/(1 +~7). (20)

The following points of comparison can be
made between the modeling in the present study
and that in the BML theory [6, 7]:

1. The molecular (dissipation) effects [terms cor-
responding to those involving C, and Cy in
Egs. (18) and (19)] are modeled in both
studies.

2. The effects of fluctuating pressure are entirely
neglected in the BML theory. The effects of
“‘slow’” pressure are accounted for in the
present study.

3. In the BML theory, the vari@\@s ofﬁ\the
transverse velocity fluctuations (v”2 and w”?2)
are assumed to be constant across the flame,
while their variation across the flame, due to
redistribution of k£ by ‘‘slow’’ pressure, is
calculated in the present study.

4. All terms on the left-hand sides of Egs. (18)
and (19) are not known in the BML theory. The
unconditional quantities in Eqs. (18) and (19)—
mean velocity @ and correlations involving u”
and ¢” —can be expressed in terms of ‘‘condi-
tional’’ quantities under the assumption of a
double-delta function pdf of c¢. The expressions

are listed in Refs. [7] and [13]. For example,
u’e” = &1 (uhy— (u).), 1)
U= (1= O)[({u)y— 1)’
+3((u)u— ) (u )+ (u3),]
+C[((u)y— ) +3((u)p— ) (u’?)
+(u3)bl, (22)

where ( ), and( ), denote means conditional
upon the fluid being burned (¢ = 1) or
unburned (¢ = 0), respectively. The condi-
tional fluctuations—for example, in (u’2),—
are departures from the conditional means (not
from the unconditional means). In the BML
theory, the unknown correlations are expressed
in terms of the conditional quantities shown in
Egs. (21) and (22). Closure is then effected by
modeling the following quantities.

a) The term 1”5 is modeled. The sensitivity
of the results to this modeling is not clear.
But the modeling is expected to be crucial.
The term ﬂ/appears in closed form in the
present study and need not be modeled.

b) A model for the difference ((u’2), —
(u’?),) is required in the BML theory
while all the conditional quantities are
calculated in the present study. Therefore,
the model used in the BML theory can be
checked against the results of the present
study.

¢) The conditional third moments (x’3), and
(u’3), are assumed to be zero in the BML
theory. The assumption can be checked
since those quantities are calculated in the
present study.

5. The closure noted above is effected by consid-
ering ¢ as the independent variable instead of x.
A solution of the flame in terms of the physical
space coordinate (x) is not possible with the
BML theory without an additional model for S,
while the structure of the flame is resolved in
physical space in the present study.

6. Animportant feature of the present study is that
the flame speed St is determined as part of the
solution. A value for St has to be assumed in
the BML theory.
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Thus it is seen that many more quantities are
modeled in the BML theory in addition to the
quantities modeled in the present study. At the
same time, the solution of the pdf yields more
information about the flow than can be extracted
from the BML theory.

RESULTS AND DISCUSSION

The turbulent flame speed (S1) normalized by the
upstream velocity variance (i, ) is shown in Fig. 2
as a function of the density ratio (R). The flame
speed has a value 2.1u for R = 1.0 and quickly
drops, as R increases, to an asymptotic value of
approximately 1.5u; by R = 4.0. This asymp-
totic value coincides exactly with the recent
prediction of Gosman [21], in an extension to the
study by Gosman and Hackberg [22], based on an
earlier version of the BML theory. The value also
falls well within the scatter of experimental data on
flame speeds in the literature [7, 13]. It should be
noted that Libby [7] and Bray et al. [6] assume a
value of St = 2.1u, for their calculations and a
value St = 2.5u in order to compare their theory
with the experiments of Moss [14].

The turbulent flame thickness (61) normalized
by the upstream length scale (/) is shown in Fig. 3
as a function of R. The thickness can be defined in
many ways; for reasons of computational stability,
we choose to define 8 to be the standard deviation
of the distribution

Z(x) = 5(1—5)/ r é(1-¢) dx. (23)
20+ %\ b
1.5+ n
S
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1
20 40 6.0 8.0 100
R

Fig. 2. Normalized turbulent flame speed against density
ratio.
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Normalized turbulent flame thickness against density

The flame thickness is approximately equal to /,
for the constant-density case (R = 1.0).and
increases continually as R increases. The increase
is linear with R beyond R = 4.0. The turbulent
flame thickness is known to be of the order of the
upstream turbulent length scale (/;) [23]. The
variation of 61 with R is further discussed below.

Figure 4 shows the profile of the mean progress
variable (€) as a function of the normalized spatial
coordinate—normalized by the turbulent flame
thickness—for all density ratios studied (the choice
of origin for x is immaterial). The mean progress
variable increases monotonically with x. It is
surprising that in spite of the many nonlinear
processes occurring in the flame, the structure of
the flame in a coordinate system nondimensiona-

08

06+

ol

04

00

-2.0 0.0 2.0

Fig. 4. Mean progress variable against distance normalized
by turbulent flame thickness. The profile is universal for all
density ratios.
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lized by the flame thickness adopts a universal
profile for all density ratios, including the con-
stant-density case. It can be shown [13] that this
fact combined with the linear increase of 6 with R
implies that the mass of fluid contained within the
flame is approximately the same for all density
ratios. The effect of the larger heat release (i.e.,
larger R) is to increase proportionately the volume
occupied by the same mass within the flame. It is
perhaps possible to rescale the governing equa-
tions for the flame to show that this is indeed true,
but such a task is not undertaken here. It should be
noted that the actual extent of the flame (over
which € varies substantially) is nearly six times the
mathematically defined thickness (61) of the flame
(see Fig. 4). The computed values of ¢”? were,
inevitably, in excellent agreement with the theoret-
ically expected values [é(1 — ¢)] for flamelet
combustion.

The mean streamwise velocities computed from
the mdf [Eq. (9)] were also in agreement with the
expected values from Eq. (16). The conditional
burned and unburned mean streamwise velocities
normalized by St are presented in Fig. 5 as
functions of ¢. The results from the present study
(R = 8.0, Fig. 5a) and those from the BML
theory [6, 7] and Moss’s experiments [14] (R =
7.5, Fig. 5b) are presented. [Since ¢ is a mono-
tonic function of x (Fig. 4), profiles through the
flame can be plotted as functions of ¢ instead of x.
Variations of quantities with respect to x can still
be deduced from Fig. 4.] Figure 5a shows that the
value of (1), at ¢ = 1 is equal to RS, as expected
[see note following (Eq. 16)], and the value of (u),
at ¢ = 0is equal to St. The burned mean velocity
is greater than the unburned mean velocity nearly
everywhere within the flame. This is due to the
effect of the mean pressure gradient accelerating
the burned fluid more (by a factor of the density
ratio) than the unburned fluid. The observed
phenomenon of countergradient diffusion [24]
(that is to say that the scalar flux u”c” is of the
same sign as the gradient of ¢, in contradiction to
gradient transport) is a manifestation of this
relative motion between the burned and unburned
fluid [see Eq. (21)]. [In the present context, a
positive value of ((#), — (u),) indicates counter-
gradient diffusion, and a negative value indicates
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Fig. 5. Conditional velocities normalized by flame speed
against mean progress variable: (a) present study, R = 8.0; (b)
BML theory and experimental data R = 7.5 (solid line, Libby
[7]; dotted line, Bray et al. [6]; symbols, data from Moss [14]).

gradient diffusion.] A small region of gradient
diffusion near the cold boundary (near ¢ = 0) is
indicated in Fig. Sa, which is necessary for flame
holding and stability [7]. The present results (Fig.
Sa) are in good agreement with the results of the
BML theory and the experimental data of Moss
(Fig. 5b) both qualitatively and quantitatively
(note the slight difference in density ratios for
Figs. 5a and 5b).

The mean pressure gradient (normalized by
puu(;z/lo) is shown in Fig. 6 against ¢ for all
density ratios studied. It is seen that for R > 1, the
mean pressure gradient is negative nearly every-
where within the flame, indicating that the mean
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Fig. 6. Mean pressure gradient normalized by p,u */ly
against mean progress variable with density ratio as a parame-
ter.

pressure decreases through the flame. The mean
pressure is constant for R = 1. The absolute value
of the mean pressure gradient, which reaches a
maximum near ¢ = 0.5, increases with increasing
R (Fig. 6).

The mean turbulent mass flux of the progress
variable in the streamwise direction ((p)u”¢”) is
shown as a fraction of the mean mass flow through
the flame (p,St) against ¢ for different density
ratios in Fig. 7. The results from the present study
are shown in Fig. 7a, and those from the BML
theory [6] are shown in Fig. 7b. Figure 7b shows
that the scalar flux is positive almost everywhere
within the flame for R = 4, indicating countergra-
dient diffusion. For R = 1 and R = 2, the flux is
negative everywhere, which supports the gradient
diffusion assumption by conventional turbulence
models for nearly-constant-density flows. The
explanations for the above trends lie in the balance
equation for the scalar flux [Eq. (19)]. An inspec-
tion of the terms in Eq. (19) reveals that the term
due to the mean pressure gradient ((c”) d (p)/dx)
is a production term and the terms due to the mean
velocity gradient ((o)u"¢” dii/dx) and the gradi-
ent of ¢ ((p)u”? dé/dx) are destruction terms. It
can be deduced from Eq. (16) and Figs. 3 and 4
that di/dx remains nearly constant with respect to
R, while dé/dx varies inversely and d(p)/dx
increases with R (Fig. 6). Thus at low density
ratios, the destruction terms are dominant (espe-
cially the one due to the gradient of ¢) and cause a
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Fig. 7. Mean mass flux of progress variable normalized by

the total mean mass flux of fluid against mean progress variable
for different density ratios: (a) present study; (b) BML theory
(Bray et al. [6]).

negative scalar flux, but at higher density ratios
the pressure gradient term dominates, causing a
positive scalar flux.

The results for the scalar flux from the present
study (Fig. 7a) are compared with those from the
BML theory [6] (Fig. 7b). The results are in good
qualitative and quantitative agreement. The peak
values of the scalar flux occur at the same values
of ¢ in both the studies for the range of density
ratios compared, though the peak values are
slightly higher in the BML results than in the
present study for corresponding density ratios.
Based on the sensitivity analysis (to the value of
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St) performed by Libby [7] and the discussion by
Anand [13], the difference can be attributed to the
higher value of St(=2.1u;) chosen in the BML
theory compared to the calculated value (=1.5 ug)
in the present study even though the flux is
normalized by p,St in Fig. 7. The results from
both the present study and the BML study (Figs.
Ta and 7b) show the region of gradient diffusion
(negative scalar flux) near ¢ = 0, though the
extent is slightly larger (up to ¢ = 0.05 for R = 6)
in the present study than in the BML study (up to &
= 0.03 for R = 6). '

We now investigate the effect and importance of

the various terms in the model equation for the

streamwise velocity variance u”? (rather than for
alict than 10t

the turbulent kinetic energy, since v”2 and w”2
vary only slightly through the flame). Equation
(18) can be rewritten (with C, = 1.0) as follows:

Rem. = — (o) 7 (o)u""
' e dx dx P
—~di d{p)
_ //2__2 n\ _ 1 24
2(p)u e (u”) ol (24)

where Rem. stands for the remaining terms in Eq.
(18) and includes the rate of change (increase) of
u”? with time (expected to be zero at steady state)
and the rate of change of 4”7 due to the reorienta-
tion term (expected to be small). Thus the remain-
der term is expected to be nearly zero throughout
the flame. On the other hand, if the remainder
term is large in comparison with the other terms in
Eq. (24), it can be inferred that the ‘‘slow”’
pressure plays an important role (Rem. is identi-
cally zero in the BML study [7]). The terms on the
right-hand side of Eq. (24) are, in order from left
to right, due to convection, turbulent diffusion,
dilatation, and mean pressure gradient. All the
terms in Eq. (24) are zero for R = 1.

Figure 8 shows the terms in Eq. (24) as a.

function of ¢ for density ratios of 8.0 (Fig. 8a) and
2.0 (Fig. 8b) and in the BML study [7] (R = 7.5,
Fig. 8¢). The figures show that the balance of %" 2
is dominated by convection, dilatation and mean
pressure gradient terms, and turbulent diffusion
plays a minor role. It is seen that the dilatation

Fig. 8a.
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Fig. 8. Balance of terms in the equation for the streamwise
velocity variance [Eq. (24)]: (a) present study, R = 8.0;
(b) present study, R = 2.0; (c) BML theory, R = 7.5 (Libby
[7D). Key: 1 = convection (—(p)ddu"2/dx); 2 = turbulent
diffusion (—d(p)u”3/dx); 3 = destruction (dilation)
(—2(p)u"?di/dx); 4 = production (mean pr. grad.).
(=2(u")d(p)/dx); 5 = remainder (1 + 2 + 3 + 4).
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term is destructive (i.e., a sink) for all density
ratios and its magnitude decreases with decreasing
R. The mean pressure gradient term (—2(u”)
d(p)/dx) is a production term for large density
ratios (say R = 4) ((u”) is positive—see Eq. (20)
and Fig. 7a—and d(p)/dx is negative). The
magnitude of the mean pressure gradient term
decreases with decreasing R since both (u”) and
the absolute value of d{p)/dx decrease, until the
term becomes a sink (Fig. 8b). This is due to the
change in sign of (u”) (rather, of u”c”) for R
< 2.5 (inferred from Fig. 7a and Ref. [13]). The
change in sign of u’c” is, again, attributable to
the small values of d(p)/dx at low density ratios
as discussed before. For R = 8.0 (Fig. 8a) the
production due to mean pressure gradient domi-
nates the destruction due to dilatation up to
approximately ¢ = 0.7, beyond which the effect
of dilatation dominates the effect of the > _mean
pressure gradient. Hence, the variance u”?2 is
expected to increase in the initial part of the flame
and decrease in the later part of the flame, thus
peaking within the flame. The variation of the
convection term (Fig. 8a) indicates that u”2 peaks
near ¢ = 0.8. On the other hand, for R = 2.0
(Fig. 8b), both the dilatation and the _mean
pressure gradient terms are destructive, and ©”2 is
expected to decrease continuously through the
flame, except for the effect of the reorientation
term (Rem.) which may cause a slight increase in
u”? beyond ¢ = 0.85. This trend is indeed
indicated by the convection term in Fig. 8b. It is
interesting to note that the profiles of the various
terms in Eq. (24) remain nearly unchanged
(though their magnitudes change) for all R = 6
[13].

The terms in Eq. (24) as obtained from the
BML theory [7] are shown in Fig. 8¢ for R = 7.5.

The terms shown in Fig. 8¢ have to be multiplied -

by d¢/dx at each ¢ in order to correspond to the
terms in Eq. (24)—d¢/dx is unknown in the BML
theory. Therefore, a quantitative comparison with
the present results (Fig. 8a) is not possible.
However, a comparison of Figs. 8a and 8c (which
are for approximately the same density ratio)
shows that the profiles of the various terms are
very similar in the two studies.

The profiles of the streamwise velocity variance
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u”? normalized by the upstream variance are
shown for different density ratios in Fig. 9 with
the results from the present study in Fig. 9a and
those from the BML theory [6] in Fig. 9b. The
trends seen in Fig. 9 bear out the discussion with
regard to the balance of terms in Eq. (24). Results
from both of the studies show a significant
increase in 1”2 through the flame for R = 6. The
variance peaks within the flame for R = 6, and the
location of the peak is nearly independent of the
density ratio in both the studies—near é = 0.8 in
the present study (Fig. 9a) and near ¢ = 0.75 in
the BML study (Fig. 9b). This result is consistent
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Fig. 9. Streamwise velocity variance (normalized by the
upstream variance) against mean progress variables with
density ratio as a parameter: (a) present study; (b) BML theory
(Bray et al. [6]).
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with the observation that the profiles of the balance
terms [Eq. (24)] are identical in shape for R = 6
[13]. Results from both studies (Fig. 9) show an
initial region near the cold boundary where the
variance decreases from its upstream value before
increasing again for R = 4. The extent of this
region depends on the value of R. The larger the
value of R, t/hg_/ smaller the region. The initial
decrease in u”? is due to the fact that the
destructive dilatation term is nonzero while the
production term due to mean pressure gradient is
nearly zero in that region (Figs. 8a and 8b).

A comparison of the results in Fig. 9a and Fig.
9b shows that the variance calculated in the BML
study is significantly higher than in the present
study. Again, it can be argued that this difference
is due to the different values of St in the two
studies. A study of the sensitivity of the BML
calculations to the value of St [7] showed that an
increase in St/u; from 2.1 to 2.5 increased the
value of u”2 by nearly 50% for R = 6. The reason
for this sensitivity is that the mean pressure
gradient, which plays a major role in the produc-
tion of the variance, is a strong function (qua-
dratic) of the flame speed. A higher value of S
leads to a higher production as well as a higher
sink term (increase in the diltation term). But the
increase in the production term is greater than the
increase in the dilatation term [13].

Figure 10 shows the unconditional and condi-
tional third moments, normalized by u 0 3, forR =

0.0 0.2 04 06 08 1.0
T

Fig. 10. Unconditional and conditional third moments of

velocity as functions of the mean progress variable for R =

8.0. The third moments are normalized by u, 3,
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8.0 from the present study. The figure shows that
the unconditional streamwise velocity distribution
within the flame is highly skewed. The skewness
(=u”3/(u"?)*?)is 0.27 at ¢ = 0.4. In addition,
it is seen that the conditional third moments are
comparable in magnitude to the unconditional
third moment, and are not negligible as assumed in
the BML theory. The skewness in the burned and
unburned velocity distributions ((u'3),/(u’2),3?
and (u’3),/(u’?),>?) are —0.23 and 0.95, re-
spectively, at ¢ = 0.6, and are —0.24 and 0.69,
respectively at ¢ = 0.8. [It should be noted that
conditional averages are ill-conditioned in certain
regions of the flame, namely, the burned averages
at the cold edge of the flame (near ¢ = 0) and the
unburned averages at the product edge (near ¢ =
1). As a result, the determination of these quanti-
ties is subject to large statistical errors in such
regions. The wiggles in the profile of (u’3), seen
in Fig. 10 can be attributed to this fact.]

The results presented here in conjunction with
additional results [13], including those for trans-
verse velocity variances, show that the turbulence
continues to evolve in the product stream (beyond
the physical location where ¢ = 1 is reached),
suggesting that the turbulence ultimately becomes
isotropic and nonskewed far downstream of the
flame. This result is to be expected since, with the
absence of effects other than viscous dissipation
and the balancing energy addition in the fully
burned gas, the effect of the reorientation term is
to make the velocity distribution joint-normal.

The models used in the BML theory are now
evaluated against the results from the present
study. Specifically, the BML models for ({u'2),
— (u’?),) and the conditional third moments are
investigated.

Figure 11 shows the BML model [7] for the
difference between the conditional variances com-
pared with the results calculated from the mdf in
the present study. The figure shows a significant
discrepancy between the present results and the
BML model both qualitatively and quantitatively—
the BML model assumes a linear variation with ¢.
Bray et al. [6] and Libby [7] report that the overall
predictions for the flame are insensitive to the
modeling of the conditional variances, although it
is apparent from their studies that the magnitude of
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Fig. 11.  Comparison of the BML model (Libby [7]) for the
conditional variances against results from the present study, R
= 8.0. The variances are normalized by the upstream
variance.

the unconditional streamwise variance is affected
by the modeling. Also, results presented in Ref.
[13] show that the burned variance makes a
significant contribution to the unconditional vari-
ance in the region where ¢ is greater than 0.6, a
region where the maximum discrepancy between
the BML model and the present results exists. In
particular, the peak value of the variance (occur-
ring near ¢ = 0.8) is affected by the modeling.
The results presented in Fig. 10 show that the
assumption in the BML theory that the conditional
third moments are zero may not be justified. The
conditional third moments make a significant
contribution to the unconditional third moment
especially beyond ¢ = 0.6 [13]. It is expected that
the effect of this modeling on the equations solved
in the BML theory (see previous section) is felt
only through the diffusion term d(p)u ”3/dx in Eq.
(24), or more precisely through the term d(p)u "3/
dc. The term is shown in Fig. 12 as calculated
from the mdf in the present study as well as from
Eq. (22) with the BML assumption for the
conditional third moments. The figure shows that
both calculations yield nearly the same value for
the term through the bulk of the flame except for
the small difference near the product edge of the
flame (¢ > 0.8). This difference is not likely to
affect the calculations of the flame since the
contribution of the diffusion term to the balance
equation [Eq. (24)] is not significant (see Fig. 8).
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Fig. 12.
equation for the streamwise velocity variance [Eq. (24)]
between results in the present study and that calculated based
on the BML assumptions regarding conditional third moments.

Comparison of the diffusion term in the balance

The computer resource required for the present
study was quite modest. The computations were
performed either on a VAX 11/750 or an equiva-
lent Masscomp machine. The CPU time required
for each run was approximately 13 h. This CPU
time is equivalent to approximately 20 min on an
IBM 3081.

CONCLUSIONS

Idealized premixed turbulent flames have been
studied using pdf methods. A modeled transport
equation for the joint pdf of velocity and the
progress variable has been solved by a Monte
Carlo method. The effects of variable-density on
flame properties as well as the competing mecha-
nisms within the flame have been studied. The
results have been compared with available experi-
mental data [14] and the results from the BML
(Bray-Moss-Libby) theory [6, 7]. The models
used in the BML theory have been evaluated
against the present calculations.

It is seen that the turbulent flame speed St
attains an asymptotic value of approximately
1.5u; and is nearly independent of the density
ratio (R) for R > 4, while the turbulent flame
thickness increases almost linearly with R. The
profile of variation of the mean progress variable
is universal and independent of R in a coordinate
system nondimensionalized by the flame thick-
ness.
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It is seen that the mean pressure gradient plays a
very important role in the production of turbulence
and scalar flux within the flame. The magnitude of
the mean pressure gradient increases with increas-
ing R. The other important terms in the balance
equations for turbulent kinetic energy and the
scalar flux are the convection (by mean velocity)
and dilatation (volume expansion) terms. The
effect of the pressure fluctuations due to turbu-
lence alone is small.

The results are in good agreement with the
available experimental data and the results from
the BML theory for premixed turbulent flames. A
value (=2.1u,) is assumed for the turbulent flame
speed in the BML theory. The quantitative differ-
ences between the results from the present study
and those from the BML theory can be attributed
to the difference between the value of St calcu-
lated in the present study and that assumed in the
BML theory.

The present pdf approach has certain advantages
over the BML approach. Fewer models are re-
quired in the present approach than in the BML
theory—important processes such as convection,
reaction, and the effect of the mean pressure
gradient appear in closed form in the present
approach. Flame speed and the structure of the
flame are calculated in the present study, while the
former is assumed and the latter is unknown in the
BML theory.

The results from the present study show that the
BML models for the conditional variances and
third moments may be inaccurate. The model for
the conditional third moments may not signifi-
cantly affect the results, while the model for the
conditional variances can affect the peak value of
the unconditional variance within the flame.

The treatment, including the neglect, of terms
involving pressure fluctations is a major source of
uncertainty in the present study as well as in the
BML studies. The importance of the pressure
fluctuations due to variable-density effects needs
to be investigated both experimentally and theoret-
ically, and suitable models need to be developed.
In addition, the present approach should be applied
to multidimensional and more easily realizable
laboratory flames so that the computed results and
experimental data can be directly compared. These

comparisons will be instrumental in the review of
current models and will also provide guidance to
future modeling efforts.
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