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Solution to Exercise 3.9
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If Q(y) is a monotonic function, then its inverse exists. Using the defini-
tion of the CDF, as well as the fact that if Q(y) is an increasing function, so
is Q@ '(y), we obtain

Fy(y) = P(Y <y) = P(Q(U) <y) = P(U < Q7' (y))- (1)
Keeping in mind that Q7!(y) = V we get:
Fy(y) = F(Q™'(y) = F(V). (2)

The definition of the PDF gives

dFy(y)  dF(Q '(y))
B dy - dy ‘ (3)

fr ()

Using the chain rule and noting that

dQ'(y)  (dQ(V)\™
dy - <dv> (4)
we obtain J0V
) =1/ (“47)). 5)

If Q(y) is a decreasing function on the other hand we get:

Fy(y) =PQU)<y)=PU>Q '(y) =1-PU<Q '(y) (6)

which gives
Fy(y) =1-F@Q '(y) =1-F(V). (7)
Using the same procedure to obtain the PDF, the final result is:

vl = -1y (“947).
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Equations 5 and 8 can be written (using the appropriate signs)

) (£°957) = 500 )

Using the fact that if Q(y) is increasing/decreasing the derivative is posi-
tive/negative, and multiplying by dV on both sides we get

sl | "G av = povyav (10)

which, by using the definition of dy gives us

fr(y)dy = f(V)dV. (11)
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