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Abstract

A new dimension-reduction method, the Invariant Constrained-equilibrium Edge Pre-Image Curve
(ICE-PIC) method, to simplify chemical kinetics has recently been developed by Ren et al. [Z. Ren, S.B.
Pope, A. Vladimirsky, J.M. Guckenheimer, J. Chem. Phys. 124 (2006) 114111]. In the present work, the
ICE-PIC method is first applied to the homogeneous autoignition of stoichiometric methane/air and its
accuracy is shown to compare favorably to those of other methods (QSSA and RCCE). For inhomoge-
neous systems such as flames, spatial transport by molecular diffusion causes a small perturbation of the
composition away from the attracting, low-dimensional, invariant manifold identified by the ICE-PIC
method. A ‘‘close-parallel’’ assumption is introduced which allows this perturbation to be determined,
and leads to an additional ‘‘transport coupling’’ term in the evolution equation for the reduced variables.
For the test case of a steady, one-dimensional, laminar, methane/air flame, it is shown that the inclusion of
transport coupling can reduce the dimension-reduction errors by a factor of 100. The ICE-PIC method
with eight degrees of freedom (including transport coupling) exhibits comparable accuracy to a quasi-
steady state assumption (QSSA) reduced mechanism with 12 degrees of freedom.
� 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

There is a well-recognized need to develop
methodologies that radically decrease the compu-
tational burden imposed by the direct use of
detailed chemical kinetics in reactive flow calcula-
tions. Of the several different types of such meth-
odologies, three approaches that are currently

particularly fruitful (and which can be used in
combination) are: the development of skeletal
mechanisms from large detailed mechanisms by
the elimination of inconsequential species and
reactions [2]; dimension-reduction techniques [3–
12]; and storage/retrieval methodologies such as
ISAT [13].

In dimension-reduction methods, composi-
tions in reactive flows are assumed to lie on (or
close to) low-dimensional manifolds in the full
composition space; and the chemistry is described
in terms of a smaller number of reduced variables
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(e.g., some major species). Every dimension-re-
duction method constructs a low-dimensional
manifold (explicitly or implicitly) in the full com-
position space. And each method also provides a
species reconstruction technique, which, given
the values of the reduced variables, identifies the
corresponding full composition on the low-dimen-
sional manifold. Many dimension reduction meth-
ods have been proposed, such as the quasi-steady
state assumption (QSSA) [3,4], rate-controlled
constrained equilibrium (RCCE) [5], intrinsic
low-dimensional manifolds (ILDM) [6], trajecto-
ry-generated low-dimensional manifolds
(TGLDM) [8], the pre-image curve method [12],
and other related methodologies such as computa-
tional singular perturbation (CSP) [14].

Recently, a new dimension-reduction method—
the ICE-PIC method—for simplifying combustion
chemistry has been developed by Ren et al. [1]. The
low-dimensional manifold employed in the ICE-
PIC method is an invariant, trajectory-generated
manifold. In addition, the ICE-PIC method pro-
vides a local species reconstruction technique which
locally determines compositions on the low-dimen-
sional invariant manifold. Compared to other local
methods such as QSSA, RCCE and ILDM, the
ICE-PIC method has the advantages of being based
on an invariant manifold which is guaranteed to
exist and to be continuous. It is computationally
more expensive, but as discussed in [1,12] this is
not a primary concern when ICE-PIC is used in
conjunction with a storage/retrieval methodology
such as ISAT. As demonstrated in [1], when per-
forming species reconstruction for the one-dimen-
sional premixed laminar hydrogen/air flame, the
ICE-PIC method succeeds over the entire tempera-
ture range (including low-temperature regions).
And compared with other methods such as QSSA,
RCCE and ILDM, it yields the smallest maximum
error.

Like most of the existing methods, the ICE-
PIC method is developed for spatially homoge-
neous systems (absent of transport processes such
as convection and diffusion), which are described
by systems of ordinary differential equations
(ODEs). The behavior of these reactive systems
can be described by trajectories in the composition
space starting from an initial condition and even-
tually relaxing to chemical equilibrium. However,
in more realistic problems such as flames, there
exist strong couplings between chemistry and
transport processes. A number of studies [14–26]
discuss the effects of transport in reduced descrip-
tions of reactive flows, either in terms of a pertur-
bation of the composition from a given manifold,
or in terms of a perturbation of the manifold.

In this work, we demonstrate the application
of the ICE-PIC method in both homogeneous
and inhomogeneous reacting systems. In particu-
lar, we examine the accuracy of the reconstructed
composition and of the rate-of-change for the

reduced composition given by ICE-PIC in com-
parison to other methods (QSSA and RCCE).
For the inhomogeneous case, ICE-PIC is imple-
mented in two different ways. The first is with no
transport coupling, which amounts to the total
neglect of the perturbations of compositions from
the ICE manifold. In the second method, trans-
port coupling is accounted for based on a ‘‘close-
parallel’’ assumption. The results confirm that
the latter method is substantially more accurate.

The paper is organized as follows. In Section 2,
the ICE-PIC method is briefly described, and in
Section 3, it is applied to the test case of the
autoignition of a methane/air mixture. In Section
4, the issues of chemistry-reduction in the presence
of transport effects are discussed, and a procedure
for the ICE-PIC method to account for transport
coupling is formulated. In Section 5, ICE-PIC
(with and without transport coupling) is examined
for the test case of a one-dimension laminar pre-
mixed flame.

2. The ICE-PIC method for the dimension reduc-
tion of chemical kinetics

We now provide a brief description of the
invariant constrained-equilibrium edge (ICE)
manifold, and of the ICE-PIC method. Full
details are provided by Ren et al. [1].

To illustrate the method we consider a
homogeneous, adiabatic, isobaric, closed system,
of fixed enthalpy h and pressure p. Thus, the sys-
tem at time t is fully described by the species spe-
cific moles (mass fractions divided by the
corresponding species molecular weights), zðtÞ ¼
fz1; z2; . . . ; znsg of the ns chemical species. There
are ne elements, and the specific moles of the ele-
ments are given by ze = ETz, where E is the ns · ne

element matrix such that Ekj is the number of
atoms of element j in a molecule of species k.
The system evolves according to the autonomous
ordinary differential equations

dz

dt
¼ SðzðtÞÞ; ð1Þ

where S denotes the net rate of change due to
chemical reactions. Since elements are conserved,
we have dze/dt = ETS = 0.

In the reduced description, the system
is described by ze and by nr (1 6 nr < ns � ne)
reduced composition variables rðtÞ ¼
fr1; r2; . . . ; rnrg, which here are taken to be the spe-
cific moles of nr user-specified ‘‘represented’’ spe-
cies. Thus, we have r = BTz, where B is a
specified constant ns · nr matrix defining the rep-
resented species. It is convenient to define the
reduced composition ~rðtÞ by

~r ¼
ze

r

� �
¼ ½E B�T z ¼ ~BT z: ð2Þ
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Thus with n~r � ne þ nr, ~r is an n~r � 1 vector and
~B � ½E B� is an ns � n~r constant matrix.

In the full composition space, realizable values
of z are constrained by the requirements that the
specific moles be non-negative (zi P 0) and that
the specific moles of elements be equal to ze (or,
equivalently, ETz = ze). Correspondingly, realiz-
able values of the reduced compositions ~r are also
confined to the ‘‘reduced realizable region,’’
denoted by Cþ, which is a convex polytope.

Most dimension-reduction approaches either
explicitly or implicitly define (in the ns-dimension-
al space of full compositions) an n~r-dimensional
manifold, parameterized by the n~r reduced vari-
ables ~r. Thus, there is a function zMð~rÞ giving
the full compositions on this manifold corre-
sponding to each reduced representation ~r in Cþ.

The ICE manifold is defined as follows. For
every reduced composition ~r on the boundary
oCþ of Cþ, zICEð~rÞ is defined to be the constrained
equilibrium composition zCEð~rÞ. That is, of all
compositions z satisfying ~BT z ¼ ~r (for the given
~r in oCþ), zCEð~rÞ is the unique composition of max-
imum entropy. This defines the constrained-equi-
librium edge of the ICE manifold. The interior
of the ICE manifold is then generated simply by
following the reaction trajectories [i.e., solutions
to Eq. (1)] from every point on the constrained-
equilibrium edge. Thus, by construction, being
composed of reaction trajectories, the ICE mani-
fold is invariant. As is readily achieved in practice,
the values of nr and the matrix B are chosen so
that the ICE manifold is not folded, meaning that
there is a unique manifold point zICE correspond-
ing to every value of ~r in Cþ.

The above description implicitly yields a
method by which the whole ICE manifold can
be generated. However, to implement dimension-
reduction strategies efficiently, it is necessary to
have a local means of ‘‘species reconstruction,’’
that is, a method of determining zMð~rÞ for a spec-
ified value of ~r. As described in Ren et al. [1], the
ICE-PIC method achieves this local species recon-
struction based on the ICE manifold. Hence, this
method is the first approach that locally deter-
mines compositions on a low-dimensional invari-
ant manifold. Because it is local, the ICE-PIC
method can readily be applied to high-dimension-
al systems. In contrast, other approaches such as
the ones in [8–11], which also employ invariant
manifolds, are global–they require the generation
of the entire manifold. The computational imple-
mentation of such global methods soon becomes
impracticable as the dimensionality of the mani-
fold increases.

We have considered above a homogeneous sys-
tem at constant pressure, p, and enthalpy, h. For
clarity, we denote the method described as ICE-
PIC(p,h), and Eq. (1) should be viewed as being
supplemented by the equations dp/dt = 0 and
dh/dt = 0. As in [1], we can also consider the case

of constant pressure and temperature, T. In this
case, the method is ICE-PIC(p,T); Eq. (1) is sup-
plemented by dp/dt = 0 and dT/dt = 0; and the
constrained-equilibrium composition zCEð~rÞ is
determined by minimizing the Gibbs function
(instead of maximizing entropy).

3. Application to the autoignition of methane

In this section, we demonstrate the application
of the ICE-PIC method in a homogeneous system
without transport processes, namely, the adiabat-
ic, isobaric autoignition of a stoichiometric meth-
ane/air mixture with an initial temperature of
1500 K and pressure of 1 atm. Quantitative com-
parisons are made with other methods, namely
RCCE and QSSA.

With the detailed GRI1.2 [27] mechanism
(which has 4 elements and 31 species), the ODEs
governing isobaric, adiabatic reaction (i.e., Eq.
(1), dp/dt = 0 and dh/dt = 0) are solved to yield
profiles of the full composition, denoted by
zA(t). (The GRI1.2 mechanism is used to facilitate
comparison with the established QSSA reduced
mechanism ARM1 [28].) At different times during
this autoignition process, the ICE-PIC(p,T)
method is employed to perform species recon-
struction, i.e., to determine the full composition
zICE on the corresponding ICE manifold as an
estimate of zA. At each time, the thermochemical
state is completely specified by pressure p, temper-
ature T and the species specific moles z; and given
the reduced representation ~r ¼ ~BT zA, the ICE-
PIC(p,T) method is applied to determine zICEð~rÞ.
Since the autoignition occurs at constant enthal-
py, the use of ICE-PIC(p,T) (rather than ICE-
PIC(p,h)) provides a more stringent test of the
methodology.

In the case considered (denoted as B7), there
are seven represented species: CH4, O2, CO2,
H2O, CO, H and O. Thus with given values of
p, T and ze, the dimension of the low-dimensional
manifold is 7. For comparison, we also apply
RCCE and QSSA to perform species reconstruc-
tion. With the same reduced representation as in
the ICE-PIC method, the RCCE method takes
the constrained-equilibrium manifold (CEM) as
the low-dimensional attracting manifold and
hence the reconstruction is zRCCEð~rÞ ¼ zCEð~rÞ. In
ICE-PIC and RCCE, the same reduced represen-
tation ~r is used, and hence these two methods
can be compared directly. In QSSA, on the other
hand, the reduced representation is r, with no
information about the elemental composition of
the unrepresented species. As a consequence, the
comparison with QSSA is somewhat less direct.
Here we consider ARM1 [28] which has nr = 16
major species. Given that there are four elements,
the dimensionality of the low-dimensional mani-
folds of ARM1 is 12. With the values of the major
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species specific moles r = BTzA being taken from
zA, the minor species are reconstructed from the
quasi-steady state approximation to yield
zQSSA(r).

With zM denoting the reconstructed species
specific moles using one of the three methods
(i.e., zM is zICE, zRCCE or zQSSA), we define the
normalized species-reconstruction error as

ez ¼ 2� jzM � zAj=ðjzMj þ jzAjÞ; ð3Þ
where jzj denotes the 2-norm. The normalized er-
ror in the rate-of-change for the reduced composi-
tion r is defined as

e_r ¼ j_rðzMÞ � _rðzAÞj=Smax; ð4Þ
where _r ¼ BT S is the rate-of-change vector for r,
and Smax is the maximum of jS(zA)j during the
autoignition process.

Figure 1 shows the normalized errors in the
reconstructed composition and the rate-of-change
for all three methods. It is readily observed that
the ICE-PIC method yields errors typically 2 or
3 orders of magnitude smaller than the corre-
sponding RCCE method. With 7 degrees of free-
dom, the ICE-PIC method yields comparably
accurate results with ARM1 which has 12 degree
of freedom. For higher temperatures,
T > 1800 K, the ICE-PIC method incurs much

smaller errors in the rate-of-change vector _r than
ARM1—two orders of magnitude smaller for
T > 2350 K. The maximum errors in _r for ICE-
PIC B7 and ARM1 during the autoignition pro-
cess are 0.018 and 0.17, respectively.

4. Reduced description of inhomogeneous systems
via invariant manifolds

We now extend our considerations to the inho-
mogeneous case so that the species specific moles
z(x,t) vary in space, x, and time, t. For simplicity
of exposition we continue to take the pressure and
enthalpy to be constant and uniform, although the
extension to variable enthalpy is straightforward.

The species conservation equation is written

o

ot
zðx; tÞ ¼ Gfzðx; tÞg þ Sðzðx; tÞÞ; ð5Þ

where, as previously, S denotes the chemical
source term, and the operator G denotes spatial
transport. This is composed of convective (C)
and diffusive (D) contributions, G = C + D, where
in general the convection is Cfzg ¼ �vi

oz
oxi

with
v(x,t) being the velocity field. In the simplest pos-
sible case (of constant density and constant and
equal diffusivities, C) the diffusion term is D ¼ ~D:

~D � C
o2z

oxioxi
: ð6Þ

With z(x,t) evolving according to Eq. (5), we de-
fine the corresponding reduced composition field
by

~rðx; tÞ ¼
zeðx; tÞ
rðx; tÞ

� �
¼ ½E B�T zðx; tÞ ¼ ~BT zðx; tÞ;

ð7Þ
[cf. Eq. (2)]; and hence for given (x, t) there is a
corresponding manifold point zMð~rðx; tÞÞ. While
we are primarily concerned with the ICE mani-
fold, the development in this section applies to
any invariant manifold. As depicted in Fig. 2,
we can express z(x,t) as

zðx; tÞ ¼ zMð~rðx; tÞÞ þ dzðx; tÞ; ð8Þ

where dz(x,t) represents the perturbation from the
manifold. The full ns-dimensional composition
space is decomposed into an n~r-dimensional repre-
sented subspace (spanned by the columns of ~B)
and an nu-dimensional unrepresented subspace
(orthogonal to spanð~BÞ, with nu ¼ ns � n~r). The
perturbation dz is defined to be in the unrepresent-
ed subspace, and with U being a constant ns · nu

orthogonal matrix spanning spanð~BÞ?, this can
be written

dzðx; tÞ ¼ Uduðx; tÞ; ð9Þ
where du ¼ UT ðzðx; tÞ � zMðx; tÞÞ.
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Fig. 1. Normalized species reconstruction errors Eqs.
(3) and (4) as functions of temperature for the autoig-
nition of stoichiometric CH4/air at 1 atm. QSSA(12)
denotes the ARM1 QSSA method in which there are 12
degrees of freedom; ICE-PIC and RCCE have 7 degrees
of freedom.
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We seek an approximate reduced description
in terms of n~r partial differential equations (PDEs)
for ~rðx; tÞ rather than the ns PDEs for z(x,t), Eq.
(5). The exact equations for ~rðx; tÞ are obtained
by pre-multiplying Eq. (5) by ~BT . With the substi-
tution z ¼ zM þ dz this yields

o~r

ot
¼ ~BT GfzM þ dzg þ ~BT SðzM þ dzÞ: ð10Þ

We now consider two ways to approximate the
right-hand side of Eq. (10) in terms of quantities
which are known in terms of ~r and zM.

4.1. First approximation: neglect of perturbations

The obvious first approximation is simply to
neglect the perturbations dz, which is tantamount
to assuming that z(x,t) lies in the manifold. From
Eq. (10), this yields

o~r

ot
¼ �vi

o~r

oxi
þ ~BT DfzMð~rÞg þ _~rMð~rÞ; ð11Þ

where

_~rMð~rÞ � ~BT SðzMð~rÞÞ; ð12Þ
is the rate of change of ~r on the manifold due to
reactions. For the case of simplified diffusion
D ¼ ~D, Eq. (6), Eq. (11) becomes

o~r

ot
¼ �vi

o~r

oxi
þ C

o2~r

oxioxi
þ _~rMð~rÞ: ð13Þ

Compared to the homogeneous case, the pres-
ence of transport has no effect on reaction
(according to this approximation). Hence, we re-
fer to this approximation also as ‘‘no transport
coupling.’’

4.2. Second approximation: close-parallel
assumption

The second, improved approximation (follow-
ing Tang and Pope [29]) is obtained by assuming
that z(x,t) is close to the manifold, and that as it

evolves it moves parallel to the manifold. This
‘‘close-parallel’’ assumption is put into mathemat-
ical form by considering the components of Eq.
(5) tangential and normal to the manifold. As
depicted in Fig. 2, for given ~r, we denote by Tð~rÞ
an ns � n~r orthogonal matrix spanning the tangent
subspace of the manifold at zMð~rÞ, and similarly
Nð~rÞ is an ns · nu orthogonal matrix spanning
the normal subspace.

For the first term in Eq. (5), the assumption
that z moves parallel to the manifold amounts
to the approximation NToz/ot � 0. For the sec-
ond term, since G depends on derivatives of
z(x,t) and since by assumption z(x,t) is parallel
to zMð~rðx; tÞÞ, the indicated approximation is

NT Gfzðx; tÞg � NT GfzMð~rðx; tÞÞg
¼ NT DfzMð~rðx; tÞÞg; ð14Þ

where the last step follows from the fact that con-
vection is entirely in the tangent subspace (be-
cause oz/oxi is a tangent vector). The
assumption that z is close to the manifold implies
that dz is small, and hence SðzÞ ¼ SðzM þ dzÞ can
be well approximated by

SðzÞ � SðzMÞ þ Jdz ¼ SðzMÞ þ JUdu; ð15Þ

where J is the Jacobian (Jik ” oSi/ozk). Now, for
an invariant manifold (such as an ICE
manifold), NT SðzMÞ is zero, and hence we
obtain NTS(z) = NTJUdu. Thus, with the
assumptions made, the normal component of
Eq. (5) reduces to

0 ¼ NT DfzMð~rðx; tÞÞg þNT JUdu: ð16Þ

Assuming the matrix NTJU to be invertible, Eq.
(16) determines du as

du ¼ �½NT JU��1
NT DfzMð~rðx; tÞÞg: ð17Þ

Eq. (16) represents a balance in the normal sub-
space between diffusion (independent of du) tend-
ing to draw compositions off the manifold, and
reaction providing a restoring effect, linearly pro-
portional to du. For the case of simplified diffu-
sion we obtain

NT ~DfzMg ¼ NT o2zM

o~rjo~rk

� �
C

o~rj

oxi

o~rk

oxi

� �
; ð18Þ

where the first term is related to the curvature of
the manifold, and the second is the dissipation
rate of the reduced variables. Thus, as previously
observed in [15], the combination of diffusion and
manifold curvature can draw compositions off
attracting manifolds.

The final evolution equation for ~rðx; tÞ is
obtained from Eq. (10) again with the approxima-
tion Dfzg ¼ DfzMg and with dz = Udu obtained
from Eq. (17):

Fig. 2. A sketch in the composition space of the ICE
manifold showing the representation of the general
composition as z ¼ zMð~rÞ þ dz. The axes denote the
represented variables ~r (in the subspace spanð~BÞ) and the
unrepresented variables u (in the subspace span
ðUÞ ¼ spanð~BÞ?). Also shown are the tangent subspace
spanðTð~rÞÞ and the normal subspace spanðNð~rÞÞ.
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o~r

ot
¼ �vi

o~r

oxi
þ ~BT DfzMð~rÞg þ _~rMð~rÞ þ _~rDð~rÞ;

ð19Þ
where the final term is

_~rD ¼ ~BT Jdz

¼ �~BT JU½NT JU��1
NT DfzMð~rÞg: ð20Þ

Notice that the evolution equation for ~rðx; tÞ (Eq.
(19)) stemming from the close-parallel assumption
differs from that Eq. (11) resulting from the total
neglect of dz only by the term _~rD. This transport
coupling term represents a perturbation to the
chemical source term due to the perturbation dz
caused by diffusion.

We also observe that the two terms stemming
from diffusion can be written

~BT DfzMð~rÞg þ _~rDð~rÞ ¼ ~BT PDfzMð~rÞg; ð21Þ

where the ns · ns matrix P

P � TTT þ ðN� JU½NT JU��1ÞNT ; ð22Þ

represents a particular projection onto the tan-
gent subspace (since NTP = 0, PT = T). Thus
the transport coupling term can also be viewed
in terms of a projection of DfzMg onto the tan-
gent space of the manifold (cf. Maas and Pope
[16] and other approaches [17–21]). The close-
parallel assumption for transport coupling has
been validated for a class of reaction–diffusion
systems in [25]. In Ren et al. [26], examine the
different approaches used to incorporate the
transport coupling in the reduced description,
particularly, on the connection and comparison
among the current close-parallel assumption,
Maas and Pope’s [16] and the ASIM approach
of Singh et al. [20].

With the inclusion of transport coupling it is
not guaranteed that the reconstructed composi-
tion zM þ dz ¼ zM þUdu is realizable. We
therefore investigate below a realizability correc-
tion in which du given by Eq. (17) is attenuated
by a factor a (0 6 a 6 1), which is taken to be
as large as possible, subject to zM þ aUdu being
realizable (and a 6 1). Note that a = 0 corre-
sponds to no transport coupling and guaranteed
realizability.

A technical issue which may be of practical sig-
nificance concerns the continuity of the projection
P. The ICE manifold can be considered to be
composed of patches, with each facet of the
boundary oCþ generating a patch. Each patch is
smooth and the manifold as a whole is continu-
ous. Within each patch the projection P therefore
varies smoothly, but it may be discontinuous at
patch boundaries. The projection proposed by
Maas and Pope [16] is based on invariant subspac-
es of J and hence may be discontinuous where
eigenvalues cross.

Given the evolution equation Eq. (19), the
reduced description is well posed given the
appropriate initial and boundary conditions for
~r. When using the ICE-PIC method in the
reduced description of reactive flows, the initial
and boundary conditions for ~r can be taken
directly from those corresponding to the full
description. This simplicity follows from the fact
that in ICE-PIC (provided the major reactants,
major products and important radicals are
included in the reduced compositions) the initial
and boundary compositions are on the ICE
manifold.

4.3. Implementation of diffusion

The reduced-dimension description of flames
and other inhomogeneous reactive flows is given
by the n~r PDEs, Eq. (19). In the numerical solu-
tion of these equations (e.g., by finite-difference
methods) a storage/retrieval method such as
ISAT can be used to store the n~r-vector _~rM as
a function of the n~r reduced variables ~r [30].
But the treatment of the diffusion term
~BT DfzMð~rÞg and of the transport coupling term
_~rD is more involved. There are two obvious
approaches.

The general and conceptually simple approach
is to store (as functions of ~r) the manifold compo-
sition zM and the n~r � ns matrix ~BT P. Then
DfzMð~rðx; tÞÞg can be evaluated in the full compo-
sition space, and Eq. (21) can be used to evaluate
both terms arising from diffusion. The computa-
tional work and storage required by this method
scale as n~rns.

At least with simplified diffusion, an alternative
is to evaluate _~rD entirely in the reduced space as

_~rD ¼ VT o2zM

o~rjo~rk

� �
C

o~rj

oxi

o~rk

oxi

� �
; ð23Þ

where VT ¼ �~BT JU½NT JU��1
NT , [see Eqs. (18)

and (20)]. The first expression in Eq. (23) (which
has n3

~r components) depends solely on ~r, indepen-
dent of the flow, and hence can be stored. In this
case, the computational storage and work [to eval-
uate Eq. (23)] scale as n3

~r .
From the viewpoints of generality and ease of

implementation the first method is preferable;
and it may be more efficient unless n~r is much
smaller than

ffiffiffiffi
ns
p

. But nevertheless the work and
storage required Oðn~rnsÞ is greater than that
required to evaluate _~rM (i.e., Oðn2

~r Þ).
We note that in both approximations the con-

servation equation for the specific moles of ele-
ments is

oze

ot
¼ �vi

oze

oxi
þ ET DfzMð~rÞg: ð24Þ
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5. Application in one-dimensional premixed laminar
flames

In this section, the ICE-PIC(p,T) method with
and without transport coupling is investigated for
a steady, isobaric, adiabatic, one-dimensional
laminar flame of stoichiometric methane/air with
an unburnt temperature of 298 K and pressure
of 1 atm. The species conservation equation for
this flame (and indeed all steady flames) is

0 ¼ GfzðxÞg þ SðzðxÞÞ; ð25Þ

in which spatial transport balances chemical
reaction.

With the detailed GRI1.2 [27] mechanism and
full transport properties, the governing equations
are solved to yield profiles of the full composition,
denoted by zP, through the flame. The spatial
transport G{z(x)} is conveniently extracted from
the computations via Eq. (25) as �S.

For the ICE-PIC method, we consider two
cases, referred to as B8 and B12, which involve
eight and twelve represented species. In B8, the
represented species are CH4, O2, CO2, H2O, CO,
CH3, H, O; and in B12 four more species are add-
ed, namely H2, OH, CH2O and C2H4. Thus, with
given p, T and ze, the dimensions of the low-di-
mensional manifolds are 8 and 12, respectively.

At different locations across the computed
flame, the temperature and the reduced composi-
tion ~r ¼ ~BT zP are extracted from the solution.
The reconstructed composition on the ICE mani-
fold zICEð~rÞ is then obtained using the ICE-PIC
method as a first approximation of zP, i.e., with
no transport coupling. The second approximation
includes transport coupling and estimates zP via
Eq. (17) as zICE + dz = zICE + Udu, and estimates
_~r via Eq. (20) as _~rM þ _~rD. For comparison, the
estimates are also obtained of zP and _r given by
the ARM1 QSSA mechanism, which has the same
number of degrees of freedom as B12. Note, how-
ever, that this comparison may favor QSSA since
it has four additional specified species.

Figure 3 shows the reconstruction errors ez in
z and e_r in _r given by QSSA and variants of
ICE-PIC. The error e_r is defined the same way
as in Eq. (4) except with zP replacing zA and
here Smax is the maximum of jS(zP)j across the
whole flame. The most striking observation
(from Fig. 3(b)) is that the inclusion of trans-
port coupling greatly reduces the error e_r, typi-
cally by two orders of magnitude. Over almost
the entire flame the error e_r in B8 with transport
coupling is less than that in QSSA and B12
(without transport coupling). With B8, the
inclusion of transport coupling reduces the peak
error in e_r from 0.2 to 0.002. For T > 700 K, the
inclusion of transport coupling in B8 reduces
the reconstruction error in z [ez, Fig. 3a]; and
for T > 1500 K the resulting errors are compara-

ble to the methods with four additional degrees
of freedom (B12 and QSSA).

As discussed in Section 4, the reconstructed
composition is not guaranteed to be realizable
when transport coupling is included. For the
premixed flame test case it is found that realiz-
ability is satisfied for T > 750 K. The behavior
at lower temperatures is examined in Fig. 4
which shows the reconstruction errors ez and e_r

given by B8 with and without transport cou-
pling, and (in the former case) with and without
realizability correction. As may be seen, without
the realizability correction, the inclusion of
transport coupling leads to relatively large errors
(ez � 10�3 at T = 400 K). With the realizability
correction, the inclusion of transport coupling
leads to errors ez which are uniformly no greater
than those without transport correction, and
generally orders of magnitude smaller (at higher
temperatures). Interestingly, the error e_r is uni-
formly reduced by the inclusion of transport
coupling (even when zICE + dz is non-realizable),
and the realizability correction leads to an
increase in e_r

ICE PIC(B8)

ICE PIC TC(B8)

ICE PIC(B12)

QSSA(12)

500 1000 1500 2000

T(K)

ICE PIC(B8)

ICE PIC TC(B8)

ICE PIC(B12)

QSSA(12)

a

b

Fig. 3. Normalized reconstruction errors in (a) species z,
Eq. (3) (b) rate of change of reduced composition _r, Eq.
(4) plotted against temperature for the one-dimensional
premixed flame test case. The dashed line is ICE-PIC B8
with transport coupling; all other methods are without
transport coupling.
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6. Conclusion

The recently developed ICE-PIC method is
investigated for two test cases involving stoichi-
ometric methane/air: autoignition, and a one-di-
mension premixed laminar flame. For the
autoignition test, with seven represented species,
the ICE-PIC method yields comparably accurate
results with ARM1 which has 12 degrees of free-
dom. (In the high temperature region
T > 1800 K, the ICE-PIC method incurs much
smaller errors in the rate-of-change vector than
does ARM1.)

For inhomogeneous systems, the ‘‘close-paral-
lel’’ assumption is shown to lead to a transport cou-
pling contribution _~rD to the rate-of-change vector
of the reduced compositions [cf. Eq. (20)]. The
inclusion of transport coupling is examined in a
one-dimensional premixed laminar flame of meth-
ane/air. The procedure substantially improves the
accuracy in the reconstructed rate-of-change vector
for the reduced composition. Hence, with transport
coupling, fewer represented species are needed to
describe a reactive system with given accuracy.
For the one-dimensional premixed laminar flame,
with 8 degrees of freedom and including transport
coupling, the ICE-PIC method yields comparably

accurate results (for the rate-of-change of the
reduced composition) to ARM1 which has 12
degrees of freedom. Without transport coupling,
the ICE-PIC method (B12, with the same degree
of freedom as ARM1) yields comparably accurate
results with ARM1.
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Comments

Jerry Lee, UTRC- UTC, USA. How do you determine
the dimension N of your invariant manifold a priori? Do
you choose N according to a certain error criteria? In a
reactive-diffusive system, it is likely that the slow manifold
may change both in dimension and its geometry but you
propose to pre-calculate a fixed manifold and then project
both the chemistry source term and the diffusion term
onto this fixed manifold. This can/will be a problem when
the reactive diffusion system goes through phases (regions
in chemistry configuration space) that correspond to dif-
ferent slow manifolds such as in the case of an ignition
process followed by a propagating flame.

Reply. At the current stage, the dimensionality of the
reduced description is specified manually. Then accuracy
tests can be performed to determine whether or not the
specified dimensionality is suitable for particular reactive
flows. In the ICE-PIC approach, the ICE manifold with
fixed dimensionality is employed. As long as the dimension
of the manifold is high enough, the situations mentioned
can be handled. Instead the method is demonstrated in
the paper both for ignition and for flame propagation.

d

William H. Green, MIT, USA. You present a meth-
od for deriving the correction terms (proportional to
the matrix H) for reaction-diffusion problems. But
you showed results from a reaction-diffusion problem.
Does H depend on the flow field? Are there extra cor-
rection terms arising due to convection? Due to heat
transfer?

Reply. As shown in ([25] in paper), the extra trans-
port coupling term in Eq. (19) can be decomposed into
two terms, which arise due to the effects of ‘‘dissipa-
tion-curvature’’ and ‘‘differential diffusion’’, respectively.
These extra (or correction) terms are derived from the
governing PDEs (Eg. 5, which includes convection) by
taking the ‘‘close-parallel’’ assumption. As shown in
the paper, the convection process does not introduce
any extra terms in the reduced description. Moreover,
the shown extra terms do not depend on the flow field.
The procedure proposed in this paper can be easily
extended to study the effect of heat transfer (or heat loss)
on the reduced description. This shows that heat transfer
and heat loss introduce additional coupling terms in the
reduced description of the same from as those in the
specified equations.
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