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Part 1
ISAT-CK USER’S GUIDE

1 Introduction

1.1 Overview

ISAT-CK is a Fortran 90 subroutine library that enables gas-phase chemical kinetics
to be implemented efficiently in CFD codes. The efficiency stems from the use of the
ISAT (in situ adaptive tabulation) algorithm (Pope, 1997).

The fluid composition in reactive flows is affected by several processes, e.g., con-
vection, diffusion, radiation and reaction. When CFD is applied to reactive flows,
splitting techniques can be used so that, over small time steps dt, the different process
can be treated in separate fractional steps. In the fractional step for reaction, for each
computational element (e.g., grid node or particle), the problem to be solved is:

given the thermochemical composition of the fluid element at time ¢, de-
termine the composition at time ¢ + 0¢ resulting from chemical reaction (at
constant pressure and enthalpy).

This problem has to be solved repetitively for every computational element on every
time step — typically of order 10° times.

The straightforward (but expensive) way to solve this problem is through direct
integration (DI): the chemical kinetics equations are integrated using an ordinary dif-
ferential equation (ODE) solver. ISAT-CK performs the same function, but it does so
much more efficiently by using the ISAT algorithm (Pope, 1997).

1.2 Components of ISAT-CK

The principal components of ISAT-CK are shown in Fig.1; and the paths of the files
involved in the standard installation are shown in Fig.2.

The user’s code calls one or more of the subroutines contained in the ISAT-CK
library isat-ck.a. These subroutines are described in Sections 2 and 3.

ISAT-CK works in conjunction with the Chemkin II library cklib.a. Chemkin is
used to determine the required thermodynamic properties and reaction rates based on
specified elementary reaction mechanisms. (It is also possible for the reaction rates to
be defined by a user-defined subroutine usrate, see Section 3.7.)
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Chemkin
cklib.a
User's CFD ISAT-CK
Code isat-ck.a
ISATAB
isatab_DP.a

Figure 1: The principal components of ISAT-CK.

ISAT
ISAT-CK2 _ISATAB
. isatab_DP.a
isat-ck.a . —
isatab_SP.a
CK49 Mech
cklib.a
ckinterp.e

Figure 2: The directory structure of the standard installation of ISAT-CK.

Contained within the ISAT-CK library is an ODE integrator based on DDASAC
(Caracotsios and Stewart, 1985), which is used to integrate the chemical kinetics equa-
tions.

The ISAT tabulation is performed by the ISATAB library isatab DP.a.

In the standard installation, the principal directory ISAT-CK2 also contains: sev-
eral demo programs; scripts for pre-processing, post-processing and for running the
demos; and a Makefile for the demos which can be adapted to the user’s needs.

(Figure 3 on page 18 provides an expanded version of Fig. 1, showing all of the
libraries, subroutines and files involved.)
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1.3 Reaction-Step and Chemistry-Interface Modes

ISAT-CK can be used in two different modes — reaction-step mode, and chemistry-
interface (CI) mode — which are described in Sections 2 and 3. In reaction-step mode,
the composition after a reaction fractional step is determined by a single subroutine
call (to sdtchem [single precision] or to dtchem [double precision]). This may be the
simplest way to implement ISAT-CK in an existing CFD code. In CI mode, more
functionality, versatility and efficiency is provided by a small set of subroutines. (In
fact, dtchem and sdtchem are implemented through calls to CI routines.)

1.4 Thermochemical Variables and Units

The purpose of this Section is to introduce the notation used, and to define the units
of the thermochemical variables. Chemkin uses CGS units. For the most part ISAT-
CK follows Chemkin in using CGS units; although, for pressure, both CGS units and
standard atmospheres are used.

The variables used and their CGS units are as follows.

Cpi constant-pressure specific heat of species i, ergs/(g K)
h specific enthalpy of the mixture, ergs/g
h; specific enthalpy of species i, ergs/g

>
@

specific sensible enthalpy of the mixture, ergs/g

N

temperature, K

o~

time, sec

pressure, dynes,/cm?

=7

molecular weight of species i, g/mole

mole fraction of species &

mass fraction of species ¢

N

specific mole number of species i, mole/g

density, g/cm?

s

The specific mole number is defined by

Z; = Y /W, (1)
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for each of the n species. The sensible enthalpy is defined by
hs(Ya T) = Z }/;[hz(t) - hi(Tref) + Cpi(Tref)Tref]a (2)
i=1

where T;..; = 298.15 K is the standard-state temperature.

1.5 Fortran Considerations

Both ISAT-CK and ISATAB are written in Fortran 90, although the calling sequences
for user-callable routines generally conform to the Fortran 77 standard. The user’s
program can be either Fortran 77 or Fortran 90, although it should be compiled and
linked using a Fortran 90 compiler. Some Fortran 95 library functions (e.g. cpu-time)
are also used.

Internally, ISAT-CK uses double precision for real variables, and hence the real
arguments to the primary subroutines (e.g., dtchem and cirxn) are double precision.
However, subroutines with single precision real arguments (e.g., scirxn) are provided
for the convenience of users whose CFD codes use single precision variables.

There is only one interface to ISATAB which uses double precision for real variables.
(The ISAT-CK user does not access ISATAB directly, only indirectly through ISAT-CK.)
Two ISATAB libraries are provided isatab DP.a and isatab_SP.a, which use double
precision and single precision, respectively, for internal storage. The former is obviously
more accurate, but the latter requires about half the storage for a table with a given
number of entries. It is recommended to use isatab DP.a initially. Once the user’s
code is working satisfactorily in conjunction with ISAT-CK, then isatab SP.a can be
tested to see if it yields essentially the same results.

1.6 License Key

Prior to using ISAT-CK, the Unix environment variable ISATKEY must be set to the full
path of the license-key file, which, in the standard installation is .../ISAT/isat.key.
This is best done in the user’s login script. If the full pathname is user/ISAT/isat.key
then using csh the appropriate command is:

setenv ISATKEY user/ISAT/isat.key

Using bash it is:

export ISATKEY=user/ISAT/isat.key
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1.7 Comparison to Earlier Versions

ISAT-CK Version 3.0 is a completely new code, written in Fortran 90, in which tabula-
tion (ISATAB) is separate from the chemistry (ISAT-CK). Compared to earlier versions,
the improvements and enhancements are:

1. the restriction of constant time step dt is removed
2. the restriction of constant pressure is removed
3. radiative heat loss is added (as an option)

4. the tabulation employs multiple binary trees (which leads to substantial perfor-
mance gains)

Because of the scope of these changes, it has not been possible to maintain complete
backwards compatibility. However, the changes to the calling sequences have been
minimized. For the user upgrading from earlier versions, the principal changes to be
aware of are:

1. the pressure p needs to be passed to subroutines cirxn/scirxn and cicomp/scicomp,
in the array elements dpt(2) and comp(1), respectively

2. the definition of the tabulation error has been changed (because the normalization
of variables has been changed), so that different error tolerances may be needed
to achieve comparable results

3. the “compact representation” is no longer used
4. the units of pressure have been changed in subroutines dtchem/sdtchem
5. subroutines ciconv/sciconv and cisave have been added

6. several input files have been renamed and redefined (e.g., chem.bin in place of
cklink and ci.nml in place of opt.in).

1.8 Outline of this Manual

This manual is in four parts: the ISAT-CK User’s Guide, the ISAT-CK Reference Man-
ual, the ISATAB User’s Guide, and the ISATAB Reference Manual. The usual ISAT-CK
user should not need to study the ISATAB parts extensively, although that is where
details on error tolerances and control of the tabulation can be found. On the other
hand, ISATAB is a general tabulation library, which can be used in other applications,
separate from ISAT-CK.
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In the next Section, the basic usage of ISAT-CK in reaction-step mode is described.
This serves as an introduction to some of the concepts used in ISAT-CK. Many of the
details are deferred to Section 3 where the preferred chemistry-interface (CI) mode is
more fully described.

2 Reaction-Step Mode

2.1 Subroutine dtchem/sdtchem

dtchem is the double-precision version of the reaction-step subroutine and sdtchem
is the single-precision version. Both subroutines are called with the same arguments
except that the floating point arguments should be declared as double precision in
dtchem and single precision in sdtchem.

A description of dtchem is shown below:

subroutine dtchem( t, kspec, nspec, specO, press, kht, ht,
1 modecp, modeit, spect, temp, dens )

I ISAT-CK routine to determine thermochemical composition after
I isobaric, reaction for a specified time interval.

! input:

! t - time interval (seconds)

! kspec - representation of species

! = 1 - mole fractions

! = 2 - mass fractions

! = 3 - specific mole numbers

! nspec - number of species

! specO - initial species vector (length nspec)

! press - pressure (Chemkin units)

! kht - type of second thermodynamic variable

! = 1 - enthalpy (Chemkin units)

! = 2 - temperature (K)

! ht - initial value of second thermodynamic variable
! modecp - not used (retained for backward compatibility)
! modeit = 6 - direct integration

! = 7 - ISAT

! output:

! ht - final value of second thermodynamic variable
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spect - final species vector (length nspec)

temp - final temperature

dens - final density (Chemkin units)
notes:

1/ All reals are double precision.

2/ Units are those used in Chemkin.

3/ If this routine is called, then ciinit should not be called.

4/ The file streams.in is used if it exists, but the value of
modeci specified in streams.in is ignored: the value is taken
from the argument modeit.

5/ The enthalpy changes solely due to radiative heat loss (if at all).

As shown above, the initial values (before the fractional reaction step) of the chem-
ical composition are passed in specO (with the order specified in the Chemkin mech-
anism file); and the thermodynamic variables are passed in press (pressure) and ht
(enthalpy or temperature). dtchem then invokes the CI subroutines to compute the
final composition after reaction for time t and returns the values in spect. Also
returned are the final temperature and fluid density.

Setting modeit= 6 will activate the direct integration (DI) subroutines at every
time step and may increase the computational time substantially. For standard ISAT
operations, modeit= 7 should be used.

In the following example, spec0(k,i) is the initial mass fraction of the kth species
at the ith grid node, and temp0 (1) is the initial temperature. The composition (spect,
tempt, dens) after reaction for a time interval dt is obtained by:

double precision dt, specO(nspec, nodes), press, tempO(nodes),
1 spect (nspec, nodes), tempt(nodes), dens(nodes)

do i = 1, nodes

call dtchem( dt, 2, nspec, spec0(:,i), press, 2, tempO(i),
1 0, 7, spect(:,i), tempt(i), dens(i) )
end do

The demo program cktest illustrates the use of dtchem, see Section 5.1.
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2.2 Files

Figure 1 on page 2 gives an overview of the libraries and the basic files used in a simple
application of ISAT-CK in reaction-step mode.

2.2.1 The Chemkin Input File chem.bin

The input file chem.bin is generated by the Chemkin interpretor program (ckinterp.e).
In order to generate the chem.bin file, the user needs to prepare his or her chemical
kinetics and thermodynamic data in the Chemkin format. The elements involved are
specified by a list of their chemical symbols, e.g., H, O, N, C, etc. Similarly the species
are specified, e.g., CO2, H20, CH4, etc. The reactions are specified, e.g., CO + OH
= CO2 + H, and quantitative information about the reaction rates are given. The
precise format of this file is described in the Chemkin manual.

For convenience, ISAT-CK provides several commonly used mechanism files, in-
cluding CH4/air (CH4.mech), Hy/air (H2.mech) and CO/Hy/air (COH2.mech). The
ISAT-CK user can either select from these mechanism files, or else supply his or her
own file.

Further information on the execution of the Chemkin interpreter ckinterp.e is
given in Section 4.1.

2.2.2 The ISAT-CK Input File ci.nml

The optional namelist file ci.nml allows the user to change certain default settings in
ISAT-CK. A version of ci.nml containing the default settings (and hence having no
effect) is:

&cinml

const_pr = .false.
const_dt = .false.
user_rate = .false.
radiation = .false.
ichout =0
ichin =0
ntree =0
errtol = 1.d-3
stomby = 50

/

The variables have the following meanings:
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const_pr (logical) If the pressure is the same on every call to ISAT-CK, then set
const_pr=.true.. When it is applicable, this leads to a saving of computer time
and memory.

const_dt (logical) If the time step is the same on every call to ISAT-CK, then set
const_dt=.true.. When it is applicable, this leads to a saving of computer time
and memory.

user_rate (logical) If user_rate=.true., then the user must specify the reaction
rates through the user-supplied subroutine usrate (see Section 3.7). A sample
program usrate.f is included in the standard installation (see Section 9).

radiation (logical) For the default radiation=.false., the reaction occurs adia-
batically (so that the enthalpy remains constant). For radiation=.true., the
enthalpy decreases due to radiative heat loss. The treatment of radiation is
described in Section 3.8.

ichout (integer). If ichout=1 is specified, then the ISAT table is periodically check-
pointed to the file isat_dat.1.

ichin (integer). If ichin=1 is specified, then the ISAT table is initialized from the file
isat_dat .1 generated on a previous run. This saves the computer time needed
to generate the table. This option should be used only if the conditions of the
run are identical to those of the run that generated the file isat dat.1. In
particular, the ci.nml file (apart from ichin and ichout) must be identical.

ntree (integer). ISATAB stores the table in m; binary trees, where n; is a strictly
positive integer. For ntree positive, n; is set to ntree. For the default ntree=0,
ny is set to 4. See the ISATAB User’s Guide (Section 14.6) for a discussion on
the setting of n;.

errtol (real) — this parameter controls the tabulation error in ISAT. Let ¢, be the
composition before reaction, let ¢ be the exact value after reaction (obtained
by direct integration), and let ¢ be the approximate value obtained from the
table. Then the tabulation error ¢ is defined as the two-norm of the difference
(¢ — @p), scaled by appropriate reference values. This error is deemed to be
acceptable if the error ¢ is less than ¢4, =errtol. The appropriate choice of
errtol is problem dependent. If too large a value is specified, then a small table
is generated that yields unacceptably large tabulation errors. If too small a value
is specified, an unnecessarily large table is generated. Hence the specification of
errtol is crucial to the effective use of ISAT-CK: this is discussed further in
Section 5. (See also Sections 14.1 and 14.3.)

stomby (real) specifies the maximum amount of storage (in megabytes) allowed for
the ISAT table.
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2.2.3 The ISAT-CK Output File ci.op

This is the output file generated when ISAT-CK is initialized, which should be checked
to ensure that there are no errors. It contains information on: the values of the
variables set in ci.nml; the species and reactions specified in the Chemkin reaction
mechanism; information about the streams (see Section 3.2); and the reference values
used for scaling (see Section 14.1).

2.2.4 The ISATAB Log File isat_log.1

This is the output file generated when ISATAB is initialized, and should also be checked
to ensure that there are no errors. It is described in more detail in the ISATAB Reference
Manual, Section 15.2.

2.3 Libraries

The user’s code calls subroutines in the ISAT-CK library isat-ck.a. These routines
call Chemkin (cklib.a) and ISATAB (isatab DP.a or isatab_SP.a). ISATAB calls
some LAPACK routines, which in turn call BLAS routines. The necessary LAPACK
and BLAS routines are provided in the library blapack.a; but it is preferable to use
instead installations of these libraries on the user’s machine. (This can be done simply
by redefining the variable LAPACK in the Makefile.)

In summary, and as illustrated in the Makefile, the modules and libraries to be
linked (in order) are: the user’s code, usrate.o (if necessary), isat-ck.a, cklib.a,
isatab DP.a (or isatab_SP.a), blapack.a (or other installation of LAPACK and
BLAS).

The user wishing to use his or her own version of Chemkin should read Section 4.

2.4 Checklist

In summary, the following steps are needed to use ISAT-CK in reaction-step mode.

1. In the user’s CFD code, add the appropriate calls to dtchem or sdtchem.

2. Use the Chemkin interpreter to generate the chem.bin file from the appropriate
Chemkin mechanism and thermodynamic data files (see also Section 4.1).

3. Edit ci.nml as necessary.

4. If user_rate=.true., supply the user-defined reaction rates in the subroutine
usrate.f.
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5. As illustrated in the Makefile, using a Fortran 90 compiler, compile the user’s
CFD code and usrate.f (if necessary), and link with the necessary libraries to
produce the executable module.

6. Set the license key as described in Section 1.6.

3 Chemistry-Interface (CI) Mode

3.1 Overview

The preferred way to use ISAT-CK is in CI mode. The user’s CFD code interacts with
CI (primarily) through an input file and six subroutines. These are:

streams.in An input file that specifies the composition of a number of “streams”.
Streams are reference compositions which are described further in the next sub-
section.

ciinit A subroutine that initializes CI and Chemkin.
cistrm A subroutine that can be called to obtain information about a stream.

cicomp A subroutine that can be used to determine different representations of the
composition (e.g., mass fractions or mole fractions).

cirxn A subroutine that performs reaction (similar in function to dtchem).

ciconv A subroutine to convert between different representations of the thermochem-
ical state.

cisave A subroutine that checkpoints the ISAT table.

Before describing these subroutines and files it is necessary to introduce the concept
of “streams”.

3.2 Streams

Many reactive flow problems consist of one or more streams flowing into a vessel, each
stream with a different but uniform composition. To perform reactive flow calculations,
these stream composition must, of course, be known. Based on this simple idea, ISAT-
CK (in CI mode) requires the user to input the compositions of one or more streams.
In the CFD code, when the composition at a node or for a particle is initialized (as an
initial condition or a boundary condition) then it is set to the composition of one of the
streams (or to a linear combination of them). Hence the streams must be specified such
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that the appropriate composition initializations can be performed — this is usually a
simple matter.

3.3 The File streams.in

The file streams.in specifies information about the streams: a sample file is shown
below.

7

35

2 1. 1113. 0. 0. 79. 21. 10.5
1 1. 300. 0. 0. 79. 21. 0.0
11. 300. 0. 0. 0. O. 10.5

The first line is an integer, which is the value of the variable modeci which deter-
mines the mode of thermochemistry to be used. The values modeci=6 and modeci=7
correspond to DI and ISAT, respectively: details for other values of modeci can be
found in the ISAT-CK Reference Manual (Section 8) under the subroutine ciinit.

The second line of this file consists of two integers: the number of streams 74,
and the index m; of the last non-zero stream species. This is now explained. The
species are numbered 1,2, 3,...,ns according to the order in which they appear in the
Chemkin mechanism file. In practice, the number of species ns may be of order 50, and
yet the number of non-zero species in the streams may be less than 5. The index ny
is such that the species with indices n; + 1,n; + 2, ..., ns do not appear in the streams:
n; can always be set to ng, but it is a convenience to order the species so that n; is
smaller.

The subsequent lines of the files — one for each stream — consist of:

1. an integer kgsrpy, described below
2. the pressure P (in atmospheres)
3. the temperature T' (K)

4. the chemical composition expressed as n; numbers, X7, X5, ..., X;, : X] gives the
relative amount of species 7 in the stream in volume units (i.e., X} is a constant
times the mole fraction X; of species 7).

Valid values of kg, are 1 and 2. For kg, = 1, the stream composition is simply
that specified by P, T and X'. For ks, = 2, the stream is the thermochemical
equilibrium composition of the mixture with the same pressure, enthalpy and elemental
composition as that specified by (2)-(4).
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The streams are numbered sequentially (1,2,...,ngym), in the order in which they
appear in the file streams.in.

The sample file streams.in shown above describes a three-stream methane-air
combustion process. In this example n; = 5, and the first 5 species are HoO, CO2,
Ns, O2 and CHy. Thus the third stream (the last line) is pure methane at 300K at 1
atmosphere. The second stream is an approximation to air, 79% Na, 21% O9 at 300K
and 1 atmosphere. The first stream is stoichiometric methane/air in equilibrium with
the same enthalpy as an unburnt mixture at 1113K.

3.4 Representation of the Thermochemistry

Internally, ISAT-CK represents the thermochemical composition by the pressure, P,
and by the n. = ng + 1 composition variables, ¢. These are the species specific mole
numbers (¢; = Z;,i = 1,2,...,n,) and the sensible enthalpy (¢,, = hs).

Additionally, the full composition is defined as the ny = ng + 4 variables corre-
sponding to the species (in some units), the density, the temperature, the pressure,
and the enthalpy, e.g., {Y, p, T, P, h}.

3.5 CI Subroutines

The basic operation of the CI subroutines is now described. A complete specification of
the calling sequences is given in Section 8. For routines named ci.. ., real arguments
are double precision; whereas in the corresponding routines named sci. .. the calling
sequence is the same, but with real arguments being single precision.

3.5.1 Subroutine ciinit

This routine initializes ISAT-CK and must be called before any other CI routine. It has
no input arguments. Qutput arguments are the number composition variables, n., the
number of variables in the full representation, n ¢, and the number of streams, 7,5ty
This subroutine generates the output file ci.op which includes the full compositions
of the streams, and the reference values used to scale the variables in ISATAB (see
Section 14.1).

3.5.2 Subroutine cistrm/scistrm

This routine returns information about a specified stream. The input arguments are
the index of the stream and the number of composition variables, n.. The output
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arguments are the composition variables ¢ for the stream, and its density, pressure
and temperature (returned in the array dpt).

3.5.3 Subroutine cicomp/scicomp

Given the pressure P and the composition variables ¢, this routine returns the full
thermochemical composition in terms of familiar variables. An input argument (krep)
specifies whether the species concentration are to be expressed as:

1. mole fractions
2. mass fractions

3. specific mole numbers.

The outputs are: the species concentration, the density, the temperature, the pres-
sure and the enthalpy.

3.5.4 Subroutine cirxn/scirxn

This routine determines the composition and density after reaction for a time interval
0t, i.e., it is similar in function to dtchem. The input arguments are the time interval dt,
the number of composition variables, n., their values before reaction, and the pressure.
The output arguments are the composition variables, and the density, pressure and
temperature after reaction.

3.5.5 Subroutine ciconv/sciconv

The purpose of ciconv is convert from one representation of the thermochemistry to
another. Inputs and outputs are density, pressure, an energy variable, and species.
The density can be in CGS or SI units. The pressure can be in atmospheres, CGS
units or ST units. The energy variable can be temperature (K), the sensible enthalpy
(CGS) or the enthalpy (CGS or SI). The species can be mole fractions, mass fractions
or specific mole numbers.

3.5.6 Subroutine cisave

As described in Section 2.2.2, setting ichout=1 in the file ci.nml causes the ISAT table
to be checkpointed periodically, so that it can be used on subsequent runs. Calling
cisave at the end of a run (or at any other time) causes the table to be checkpointed
immediately.
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3.6 Using the Chemistry Interface

The philosophy behind the Chemistry Interface is to allow the CFD code to be inde-
pendent of the details of the thermochemistry. In this way, different descriptions of
the chemistry can be used — e.g., detailed chemistry using DI, reduced chemistry using
ISAT-CK, or a very simple mixture-fraction or progress variable formulation — without
any changes to the CFD code.

In an implementation of the CFD code that fully exploits this philosophy, the
only thermochemical quantities represented in the CFD code are: pressure, density,
temperature, and “composition variables.” In some approaches (e.g., PDF methods),
it is not necessary to know the definition of the composition variables, as long as they
are linear combinations of species mass fractions and enthalpy.

The thermochemistry to be used is specified by the Chemkin file chem.bin, by
the subroutine usrate (if it is used), and by the CI input file streams.in. In order
to initialize the thermochemical variables, the CFD code makes appropriate calls to
cistrm. Ideally, during the main part of the computation, the only CI routine that is
called is cirxn. In addition to advancing the composition due to reaction, this routine
also returns the density and temperature. The subroutine cicomp is designed to return
quantities for output, not to be used as part of the computation. Again, note that in
this ideal application, the definition of the “composition variables” does not need to
be known in the CFD code.

The CI routines can be used (differently) even if the CI philosophy is not used in
the CFD code. In particular, the subroutine ciconv can be used to convert between
the different representation of the thermochemistry used in the CFD code and that
used on ISAT-CK. For example, if the CFD code represents the thermochemistry by
p(SI), P(SI), T(K) and mass fractions Y, then the composition can be advanced by
the calls:

double precision Y(us), Z(ns), phiO(ns+1), phit(ns+1), dpt(3)

! convert from { rho(SI), P(SI), T(K), Y }
! to { rho(CGS) P(CGS), hs(CGS), Z }

call ciconv( 2, 3, 1, 2, rho, P, T, VY,
1 1, 2, 2, 3, rhocgs, pcgs, hs, Z )

I advance composition

nc =ns + 1
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phiO(1l:ns) = Z(1:ns)
phiO(nc) = hs
dpt (2) = pcgs

call cirxn( dt, nc, phiO, phit, dpt )
| convert back to obtain { rho(SI), P(SI), T(K), Y } after reaction

call ciconv( 1, 2, 1, 3, dpt(1), dpt(2), dpt(3), phit(l:mns),
1 2, 3, 1, 2, rho, P, T, Y )

There is, of course, some computational overhead in performing these conversions.
Hence, if possible, it is best to use the same representation in the CFD code as is used
in ISAT-CK. (Note that the conversion from enthalpy to temperature involves iteration:
this is avoided in the above code fragment.)

An explicit routine to determine density is not provided: the density returned by
cirxn (i.e., dpt (1)) should be used if possible. Otherwise, the density can be obtained
from cicomp.

3.7 User-Supplied Reaction Rates

In normal usage of ISAT-CK (in which all of the thermochemistry is provided by
Chemkin), the reaction rates are obtained by ISAT-CK through a call to the Chemkin
subroutine ckwyp. If the user wishes instead to specify the reaction rates, then it is
necessary to:

1. set user_rate=.true. in the file ci.nml

2. provide the subroutine usrate

A trivial version of usrate is given in the ISAT-CK Reference Manual (Section 9),
which shows the required calling sequence. Setting user_rate=.true. causes ISAT-
CK to call usrate in place of ckwyp, but with the same arguments. Hence, with the
trivial version of usrate — which simply calls ckwyp — the result is the same whether
user_rate is .true. or .false..

The trivial version of usrate is included in the ISAT-CK library isat-ck.a. On
most systems, if the user’s version usrate.o is linked before isat-ck.a, then the
user’s version will be used. On some systems it may be necessary to remove usrate.o
from isat-ck.a.

In the Makefile provided, the user’s routine usrate_example.f will be used if the
definition of USRATE (in the Makefile) is changed to USRATE = usrate_example.o.
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Several versions of usrate, corresponding to different reduced mechanisms, are
provided in the directory Mech.

3.8 Radiation

By default, radiation is not included, in which case reaction takes place adiabatically
(i.e., with no heat loss, and with constant enthalpy).

Heat loss by radiant emission from the gas mixture is accounted for by the setting
radiation=.true. in the file ci.nml. The radiant emission is calculated based on
the absorption coefficients specified in the file rad.in. The file provided contains these
coefficients (obtained from Radcal, Grosshandler, 1993) for the species CO, CO5, H,O
and CHy4. (More details are given in Section 10.4 and by Tang and Pope, 1999.)

The radiative heat loss rate is determined from the expression

q" =40 pia;(T)y (T - T)), (3)
7

where: ¢ is the net energy emitted per unit volume per unit time (W/m?, in SI
units); o = 5.669 x 10~8 (W/m?/K*) is the Stefan-Boltzman constant; p; is the partial
pressure of species i (kPa); a;(T) is the absorption coefficient of species i (1/(m kPa));
vi = 1 is the augmentation factor; T is the temperature (K); and T}, is the background
temperature, e.g., 300 K; and summation is over all of the radiating species. (The
augmentation factors ; are included to facilitate the investigation of radiation from
individual species, e. g., radiation from species 7 is neglected if ; is set to zero.)

This treatment of radiation is complete only if: only those species mentioned gener-
ate significant radiation; the system is free of soot and other non-gaseous matter; and
absorption is negligible (i.e., the optically-thin limit). If other effects are significant —
e.g., absorption — then, these effects need to be treated in a different fractional step.

The file rad.out summarizes the initialization of the radiation routine in ISAT-CK.

3.9 (I Files

Figure 3 shows all of the input and output files involved in ISAT-CK. Many of these
files are descibed in other sections:

e the Chemkin files chem.inp, therm.dat, chem.out and chem.bin in Sections 4
e streams.in in Sections 3.3 and 10.3

e ci.nml in Sections 2.2.2 and 6.1
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Chemkin ckinterp.e
cklib.a
Greamsi 3
chem.out
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code isat-ck.a \.

ddasac[a,d,w].op
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Figure 3: The components of ISAT-CK showing all of the input and output files.

usrate.o

e rad.in and rad.out in Section 3.8
e ci.op in Section 2.2.3

e isat_dat.1 in Section 2.2.2.

The remaining files are now described.

The file isat.nml is a namelist file that can be used to change some of the default
setting in ISATAB (see Section 14). In normal usage of ISAT-CK; this file is not needed.

The file isat_op.1 is an output file containing information on the performance of
ISATAB, and which is described in Section 15.3 and 16.5. This can be post-processed
using the Matlab script isat.m.

The three files ddasac[a,d,w] .op are output files associated with the DDASAC
ODE integrator. The ODE’s arising in chemical kinetics can be challenging and ill-
conditioned; and, unfortunately, DDASAC is not always capable of integrating them
reliably and accurately.
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The file ddasaca.op reports on the accuracy of the ODE integration. Every time
an ISAT table entry is added, the ODE integration is performed twice, with different
DDASAC error tolerances, so that the integration error can be measured directly. Two
errors are computed: the maximum absolute error is the species specific mole numbers;
and the absolute error in temperature. If either of these errors is a record (i.e., greater
than any previous error), then the errors are written to ddasaca.op. Thus, each line
of ddasaca.op corresonds to a record error. The five entries on each line are:

1. the number of ODE integrations performed so far

2. the maximum absolute species error (on this integration)
3. the absolute temperate error

4. the initial temperature

5. the time step 0t

The files ddasacw.op and ddasacd.op give warnings and diagnostics, respectively,
in case the ODE integration is not accurate or successful.

3.10 Checklist

In summary, the following steps (which are illustrated in demo_pasr and in the Make-
file) are needed to use ISAT-CK in CI mode:

1. Edit the streams.in and ci.nml files as necessary.

2. Use the Chemkin interpreter to generate the chem.bin file from the appropriate
Chemkin mechanism and thermodynamic data files (see also Section 4.1).

3. If user_rate=.true., supply the user-defined reaction rates in the subroutine
usrate.f.

4. In the user’s CFD code:

(a) initialize ISAT-CK by calling ciinit

(b) obtain the stream information and initialize the composition variables using
cistrm.

(c) for the reaction sub-step, obtain the composition and density after the re-
action using cirxn (and ciconv if necessary)

(d) use cicomp (or ciconv) to obtain the thermochemical composition in terms
of familiar variables for output
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5. As illustrated in the Makefile, using a Fortran 90 compiler, compile the user’s
CFD code and usrate.f (if necessary), and link with the necessary libraries to
produce the executable module.

6. Set the license key as described in Section 1.6.

4 Chemkin Considerations

4.1 Chemkin Interpreter

Prior to running a program that involves Chemkin, it is necessary to run the Chemkin
interpreter. In the standard installation, the interpreter is the executable
ISAT-CK2/CK49/ckinterp.e. The two required input files are: the Chemkin mech-
anism file chem.inp; and the thermodynamic data file therm.dat. In the directory
ISAT-CK2, execution of CK49/ckinterp.e produces the two files: chem.bin, which is
the required input file for Chemkin; and the diagnostic output file chem.out. After
execution of CK49/ckinterp.e, the file chem.out should be examined to verify correct
and successful execution.

Note that different versions of Chemkin and its interpreter use different names for
the input and output files. ISAT-CK requires that the Chemkin input file be named
chem.bin.

The script file ck_setup is provided to run ckinterp.e. For example, given the
mechanism file CH4 .mech and the thermodynamic data file therm.dat, then executing;:
ck_setup CH4.mech
executes ckinterp.e to generate the corresponding Chemkin input file chem.bin. The
diagnostic output file (chem.out) is renamed CH4.mech. op.

4.2 Different Versions

The user may wish to use his or her own version of Chemkin. A problem that may arise
in this event is caused by the fact that the calling sequences to the Chemkin routines
ckinit and cklen are different in different versions. Specifically, later versions include
iflag as the final argument, and ISAT-CK assumes this to be the case.

If the version of Chemkin being used does not contain iflag, then the subroutine
ci_ck.noflag.f should be compiled and linked (before isat_ck.a). (On some systems
it may also be necessary to remove the file ci_ck_flag.o from the library.)
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4.3 Subroutine ck_corr

In Chemkin, thermodynamic quantities (e.g., enthalpy) are represented as polynomials
in two temperature ranges. The temperature ranges and the polynomial coefficients
are specified in the file therm.dat. At the intersection of the two temperature ranges
(which is usually 1,000K), all the properties should be the same whether they are
evaluated based on the low-temperature region or on the high-temperature region. For
some thermodynamic data bases (i.e., versions of therm.dat) this condition is not
exactly satisfied; and this can lead to difficulties in the iterative procedure used to
determine temperature from the enthalpy.

The subroutine ck_corr remedies this problem by making small adjustments to the
polynomial coefficients so as to ensure continuity of properties between the temperature
ranges. By default, in ISAT-CK this routine is not used, because it is not portable (when
different versions of Chemkin are used). If it is found necessary, the routine can be
added by compiling and linking it (before isat_ck.a), but first making sure that the
common blocks in ck_corr.f are consistent with those in Chemkin. In order for this
subroutine to be called, in the file ci.nml, it is necessary to set ickcorr=1.

5 The Demo Programs

Several “demo” programs are provided. After the initial installation of ISAT-CK, these
should be run to verify the correct operation of ISAT-CK. The source code and Makefile
also illustrate the use of ISAT-CK.

5.1 The Demo Program cktest

The main purpose of this demo is to test the correct operation of Chemkin coupled
to ISAT-CK. Given an initial composition, cktest determines the composition after
reaction for a specified time. It does this twice: first using dtchem, and then using
cirxn (demonstrating the use of ciconv discussed in Section 3.6). The source code
cktest.f can be edited to change (among other things): the initial composition and
temperature, the pressure, and the time increment t.

The standard demo is performed by executing the script demo_cktest. This gen-
erates the following output files which can be examined to verify correct operation:

CH4 .mech.op - the output from the Chemkin interpreter.

ci.op - the log file produced by ISAT-CK giving information about its initialization.
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cktest.op - the output from cktest giving the initial and final compositions. This
can be compared to the standard result cktest.op_ref: the only differences
should be in format and round-off.

Note that cktest uses direct integration rather than ISAT. To use ISAT instead,
edit cktest.f to change the value of modeci to 7. To re-run the demo, either execute
demo_cktest, or execute:
make cktest
cktest

Whenever new thermochemistry is used, it is recommended to test it using cktest,
first with DI (i.e., modeci=6), and then with ISAT (i.e., modeci=7).

ISAT-CK will use the file streams.in if it exists (but note that demo_cktest re-
moves this file). Hence, by appropriately specifying the file streams.in and then exe-
cuting cktest, the streams (including equilibrium compositions) are output to ci.op.
This is a convenient way to calculate equilibrium properties.

5.2 The Demo Program pasr

The program pasr performs a calculation for a Partially-Stirred Reactor (PASR), using
the pairwise mixing model. This is an excellent test-bed in which to examine many
aspects of ISAT-CK’s performance.

The partially-stirred reactor used previously to test implementations of combustion
chemistry (Correa & Braaten 1993) has the undesirable property that (in the steady
state), the accessed region is a one-dimensional manifold: the composition of each
particle is a unique function of its residence time. The PASR using the pairwise
mixing model, on the other hand, is designed to yield a much larger accessed region,
and hence provides a more stringent test.

At any time ¢, the PASR consists of an even number N of particles, the ith particle
having composition Q) (t). With At being the specified time step, at the discrete times
kAt (k integer) events occur corresponding outflow, inflow and pairing, which can
cause ¢(i) (t) to change discontinuously. Between these discrete times, the composition
evolves by a mizing fractional step and a reaction fractional step.

The particles are arranged in pairs: particles 1 and 2, 3 and 4, ..., N — 1 and N
are partners. The mixing fractional step consists of pairs (p and ¢, say) evolving by

de®) B
.

_ (¢(p) _ ¢(q))/7mix’ (4)
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A\ oy
dt = _(¢ U — ¢p )/Tmlxa (5)

where Ty is the specified mixing timescale.

In the reaction fraction step, each particle evolves by the reaction equation

de g
dt

(¢D). (6)

With 7.5 being the specified residence time, outflow and inflow consists of selecting
%N At/ Tes pairs at random and replacing their compositions with inflow compositions,
which are drawn from a specified distribution.

With 7.5 being the specified pairing timescale, %N At/ Tpair pairs of particles (other
than the inflowing particles) are randomly selected for pairing. Then these particles
and the inflowing particles are randomly shuffled so that (most likely) they change
partners.

In the program pasr, the residence time is tres, these are nstr inflowing streams,
with relative mass flow rates f1strm. The initial condition for all particles is set to the
composition of the first stream. The particles react; and they mix on a timescale tmix
with partners which are randomly re-assigned on a timescale tpair. The pressure
varies sinusoidally in time between prmin and prmax with a period of prtime.

The largest time step dtmax is determined by the specified constant cdtrp. The
smallest time step dtmin is smaller than dtmax by the factor dtfac (i.e., dtmin =
dtmax * dtfac). The time step used is random, uniformly distributed between dtmin
and dtmax. The largest time step dtsmax for mixing and reaction substeps is deter-
mined by the specified constant cdtmix.

Typically this test program is used in two ways: (1) short runs to test the accuracy
of ISAT-CK for given error tolerances, etc., and (2) very long runs to test the storage
requirements and efficiency of ISAT-CK. The duration of the run is specified as anres
residence times.

Default values of all of the parameters mentioned above are set (in data statements)
in pasr.f. They can be changed through the namelist file pasr.nml.

There are three PASR demos which are now described.

5.2.1 demo_pasr

The standard case is run by executing the script demo_pasr. This uses a skeletal mech-
anism for methane (CH4.mech), and three streams which are defined in streams.pasr.

The program pasr produces three output files:
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pasrm.op contains ensemble mean properties of the reactor as functions of time. This
file can be post-processed using the Matlab script pasr m.m.

pasrs.op contains properties of a single particle which can be displayed using the
Matlab script pasr_s.m.

pasrp.op contains a full dump of particle properties. This file is used in the demo
demo_pasr_err described below.

In addition to these three output files from pasr, ISATAB generates the output file
isat_op.1l which can be post-processed using the Matlab script isat.m; and ISAT-
CK generates the file ci.op which provides a log of the initialization of Chemkin and
ISAT-CK.

After it has run pasr, the script demo_pasr then executes the program psrtest.
This compares the output file pasrm.op to the reference pasrm.op_ref to check the
correct operation of ISAT-CK. The error — due to round-off — should not be greater
than a percent or two.

5.2.2 demo_pasr_err

An important use of the PASR test case is to measure the global error ¢, that results
when ISAT-CK is used with a specified error tolerance e4,;. The script demo_pasr_err
demonstrates this use.

Two PASR runs are performed (denoted by A and B) with identical conditions,
except for the error tolerances which are e4 = 10* and eg = 1075, respectively. The
output file pasrp.op from run B is renamed pasrp.op_ref. The program pasr_err
then measures the error between pasrp.op (from run A) and pasrp.op_ref (from run
B) and writes the results to the file pasrerr.op. This file can be post-processed using
the Matlab script pasr_err.m.

Figure 4 shows the absolute and relative error in the species specific mole numbers
obtained from pasr_err.m. The relative error is less than 5% for all species. Figure
5 shows the same errors, but plotted against the average value of the species’ specific
mole number.

(In general, it is best to measure the error in ISAT-CK relative to the result obtained
by direct integration, which is effected by setting modeci=6. However, such a run is
quite time-consuming. Instead, a good estimate of the global error in ISAT-CK using
the given error tolerance €4 can be obtained by comparing the results to a second run
with eg = %0514' This is the method used in demo_pasr_err.)

It is emphasized that demo_pasr_err is just a demo. The global error should be
measured under conditions that are as close as possible to the intended application.
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Figure 4: Absolute (*) and relative (o) errors in the species specific mole numbers from
demo_pasr_err. The numbering of the species is the same as in the Chemkin mechanism file
CH4 .mech. The horizontal lines show 1% and 5% error levels.
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Figure 6: Number of retrieves, grows and adds against the total number of queries for a long
PASR calculation similar to demo_pasr_long.

The test is also more reliable if it is performed after the bulk of the ISAT table has
been generated.

5.2.3 demo_pasr_long

The standard case of pasr runs the PASR for one residence time, which results in
too small a computation for ISAT-CK to show a dramatic speed-up relative to direct
integration of the chemical kinetic equations. A longer computation (100 residence
times) is provided by the script demo_pasr_long. (This may take several hours to
run.) The output file isat_op.1 can be examined using the Matlab script isat.m.

Figures 6 and 7 show results for a test similar to demo_pasr_long, but with the
number of residence times increased to over 50,000. As a function of the number of
queries (i.e., calls to ISATAB), Fig. 6 shows: the number of retrieves from the ISAT
table; the number of adds to the table; the number of grows; and the number of direct
integrations (see Section 13 for explanations). After about 6 x 10% queries, the table
becomes “full” as the number of entries reaches the allowed maximum (of about 20,000)
for the given amount of storage. Thereafter if a query cannot be resolved by a retrieve
or a grow, then it is resolved by direct integration (DI). For this long run, over 99.97%
of the queries are resolved by retrieves.

Figure 7 shows the average CPU time (on a 450 MHz PC) per query, and for
retieves, grows and adds. The CPU time for a grow is dominantly the time taken
to perform a direct integration (DI), which may be seen to be about 3 x 10~?s. In
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Figure 7: Average CPU time per query, retrieve, grow and add against the total number of
queries for a long PASR calculation similar to demo_pasr_long.

comparison, an add takes about 7 times as long, whereas a retieve takes 6 x 107°s, i.e.,
less that a DI by a factor of 500. After 105 queries, the average time per query (i.e., the
total time divided by the number of queries) decreases steadily, as most queries result
in retrieves. Eventually the average time per query approaches that for a retrieve,
leading to a speed-up factor (compared to DI) of 380.

5.2.4 Specification of the Number of Trees

For a given problem, and a given value of €;,, the primary parameter controlling the
efficiency and memory demands of ISAT-CK is the number of binary trees n, = ntree.
The influence of n; is illustrated in Figs. 8 and 9 for a demanding case similar to that
in demo_pasr_long, but with £;,; = 10™* and the time step varying between 10~ and
10~* (i.e., dtfac=0.1 in pasr). The results of 8 runs are shown, for n; = 1, 4, 16, 32,
64, 128, 256, 1024, with each run being for 8 hours on a 500 MHz Intel processor.

Figure 8 shows the number of leaves added (i.e., the ISAT table size) at the end of
each run. As may be seen, the table size decreases substantially with increasing n; —
by about a factor of 5 over the range shown.

Figure 9 shows the average CPU time per query and per retrieve. The first ob-
servation is that the time to retrieve increases with n, (because more trees are being
traversed and more EOA’s are being considered). For n; = 1, the time per query is just
over half of that for a direct integration, and over 200 times that for a retrieve. This
is because a significant fraction of queries result in grows and adds. For n; = 1024, on
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5 THE DEMO PROGRAMS
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Figure 8: Table size (number of leaves added) as a function of the number of binary trees n;.
PASR test case, £4,; = 1074, dtfac=0.1, after 8 hours CPU time.
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the other hand, the query time is just twice the retrieve time, since, by the end of the
run, nearly all queries result in retrieves. As n; increases (and as the duration of the
run increases) the query time approaches the retrieve time.

It may be seen from Fig. 9 that the time per query has a minimum for n; = 128,
which is therefore the optimal value (for this case). In general, the optimal value of n;
depends on: the storage available; the number of queries required; the error tolerance;
and the complexity of the problem (in terms of the thermochemistry and the ranges
of pressure and time step). For demanding problems it may be easiest initially to use
a large value of n; (e.g., ny = 128), since (compared to the default n, = 4) less storage
is required, and the asymptotic retrieve-dominated state is reached more quickly.

6 Advanced Features

6.1 Changing Default Settings

Various default settings can be changed through the namelist file ci.nml. It is strongly
recommended that these settings (except for those discussed above) not be changed
except by expert users, and when there is a need to do so.

6.1.1 Parameters Passed to ISATAB

The following parameters are passed to ISATAB: see Sections 16.3 and 16.4 for a detailed
description.

ichin =0 ! =1 to read checkpointed table

ichout = 0 I =1 to write checkpointed table

ntree =0 ! number of ISAT trees

noisat = 0 I =1 to suppress ISAT and use DI

idites = 0 ! =1 to perform DI for checking inside EOA
ifull =0 I =1 for leaf substitution when table full
kecpv =0 ! kind of cutting-plane vector

errtol = 1.4-3 ! ISAT absolute error tolerance

elpmax = 0.1 ! maximum allowed size of EOA

elpOmax = 0. I controls size of initial EDA

stomby = 50 ! storage allowed for ISAT table

outinc = 1.02 ! controls amount of ISAT output
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6.1.2 DDASAC Error Tolerances

The ODE integrator DDASAC has absolute and relative error tolerances for the ODE
integration and for the calculation of sensitivity coefficients. These are set by:

atolc 1.4-6
rtolc = 1.d-9
atols = 1.d-2
rtols 1.d4-2

absolute error tolerance for ddasac
relative error tolerance for ddasac
absolute error tolerance for sensitivities
relative error tolerance for sensitivities

6.1.3 DDASAC Accuracy Testing

The accuracy of DDASAC can be monitored on ISATAB adds (ichdas=1, the default),
on ISATAB grows and adds (ichdas=2), or not at all (ichdas=0). A warning mes-
sage is issued (on the file ddasacw.op) if the species error exceeds pewarn, or if the
temperature error exceeds tewarn. Only one warning is issued.

6.1.4 Bounds on Temperature

Errors in the thermochemical inputs and elsewhere can cause spuriously high or low
temperatures. ISAT-CK terminates if a temperature is encountered that is less than
tbadlo (default 250K), or greter than tbadhi (default 3000K). For problems in which
the temperature exceeds these bounds, then the bounds should be changed. It is
emphasized that a spuriously high or low temperature is usually an indication of a
gross error in the input. It can also occur if errtol is too large, leading to unrealistic
thermochemical compositions.

6.2 Simpler CI Thermochemistry

The Chemistry Interface is designed to allow CFD calculations to be performed with
different thermochemistry with little or no modification to the flow code. The different
chemistry is specified through the files streams.in and chem.bin. The first line in
the file streams. in defines the integer variable modeci, which has the following effect:

modeci=1 — inert, constant-density flow
modeci=2 — mixture fraction formulation
modeci=3 — reaction progress variable formulation

modeci=4 — reserved for future use
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modeci=5 — reserved for future use

modeci=6 — direct integration of Chemkin kinetics

modeci=7 — Chemkin kinetics using ISAT.

The specification of the remainder of the file streams.in depends on the value of

modeci. For modeci= 6 or 7, it is described in Section 3.3. For all values it is given in
the ISAT-CK Reference Manual (in Section 10).
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Part II
ISAT-CK REFERENCE MANUAL

8 ISAT-CK Subroutines

This section gives a list of the ISAT-CK subroutines and their arguments, including
dtchem. The double-precision versions of the subroutines are shown. For the single-
precision versions, the calling sequence is the same, but with all reals being single-
precision.

! The calling sequences for the double-precision Chemistry Interface
! subroutines are given in the following order. The names of the
! single-precision versions are shown to the right.

! double precision single precision
! ciinit( ncv, nfullv, nstrms ) ciinit
! cistrm( istr, ncv, c, dpt ) scistrm
! cicomp( ncv, c, krep, nfullv, comp, cname ) scicomp
! cirxn( t, ncv, cO, ct, dpt ) scirxn
! ciconv( ncv, jd, jp, je, js, sciconv

! din, pin, ein, spin,
! kd, kp, ke, ks,
! dout, pout, eout, spout )

! cisave( nrec ) cisave

! dtchem( t, kspec, nspec, specO, press, kht, ht,
! modecp, modeci, spect, temp, dens ) sdtchem

subroutine ciinit( ncv, nfullv, nstrms )

! chemistry interface initialization routine.
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! input: - none

I output:

! ncv - number of composition variables (integer)

! nfullv - number of items in the full representation (integer)
! nstrms - number of streams (integer)

I files:

! streams.in - input file of stream information.

! the first record of streams.in contains the value of the
! integer variable modeci which determines the mode of
! thermochemistry to be used. The specification of the
! subsequent records of streams.in depends on modeci.
! modeci = 1 - inert, constant-density flow

! modeci = 2 - mixture fraction formulation (f)

! modeci = 3 - reaction progress variable formulation (c)

! modeci =[4]- (f,c) formulation

! modeci =[5]- general user-supplied thermochemistry

! modeci = 6 - Chemkin/direct integration

! modeci = 7 - Chemkin/ISAT

! ci.op - output file

subroutine cistrm( istr, ncv, c, dpt )

! chemistry interface routine to return composition of specified stream.

! input:

! istrm - index of stream ( 1 <= istrm <= nstr ) (integer)

! ncv - number of composition variables (integer)

! output:

! c - composition vector for stream istrm (length ncv, double)
! dpt - density, pressure and temperature of stream istrm

! (length 3, double)
subroutine cicomp( ncv, c, krep, nfullv, comp, cname )

! chemistry interface routine to return full composition comp,
! corresponding to composition c.
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! input:

! ncv - number of composition variables (integer)

! - If ncv=0, then only cname is returned: other input ignored.
! c - composition vector (length ncv, double)

! krep - type of representation required

! - for modeci = 6 or 7, then

! krep = 1 - express species as mole fractions

! krep = 2 - express species as mass fractions

! krep = 3 - express species as specific mole numbers

! nfullv - number of full composition variables (integer)

! comp(1l) - pressure in Chemkin units (modeci = 6 or 7, only)
! output:

! comp - full composition vector (length nfullv, double)

! cname - names of composition variables (character*10)

!' for modeci = 6 or 7, nfull = ns + 4 ( ns = number of species)
' comp (i) = gpecies(i), i=1, ns

! comp (ns+1) = density (Chemkin units)

! comp(ns+2) = temperature (K)

! comp (ns+3) = pressure (Chemkin units)

! comp(ns+4) = enthalpy (Chemkin units)

subroutine cirxn( t, ncv, c0, ct, dpt )

! chemistry interface routine to return composition c(t) resulting from
! reaction for a time t from the initial composition c(0). Also
! returned are density, pressure and temperature.

! input:

! t - time (seconds), duration of reaction (double)

! ncv - number of composition variables (integer)

! c0 - initial composition vector (length ncv, double)

! dpt(2)- pressure in Chemkin units (required for modeci=6,7)
! output:

! ct - final composition vector (length ncv, double)

! dpt - density, pressure and temperature (length 3, double)
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subroutine ciconv( ncv, jd, jp, Jje, js,

1 din, pin, ein, spin,
2 kd, kp, ke, ks,
3 dout, pout, eout, spout )

! chemistry interface routine to perform conversion of thermochemical
! variables for modeci = 6 or 7.

input:
! ncv - number of composition variables (=ns+1) (integer)
! jd - units of input density (integer):

[
[

[

! =1, CGS (g/cm™3)

! =2, SI (kg/m"3)

! jp - units of input pressure (integer):
! =1, standard atmospheres

! =2, CGS (dyne/cm~2)

! =3, SI (Pa)

! je - type of input energy variable (integer):
! =1, temperature, T (K)

! =2, sensible enthalpy, h_s (CGS) ergs/g
! =3, enthalpy, h (CGS) ergs/g

! =4, enthalpy, h (SI) J/kg

! js - type of species variable (integer):
! =1, mole fraction, X

! =2, mass fraction, Y

! =3, specific mole number, Z (mole/g)

! din - input density (double)

! pin - input pressure (double)

! ein - input energy variable (double)

! spin - input species variables (length ns=ncv-1, double)
I kd
[
[
[
!
[
[
[

- units of output density (integer) (=1 or 2, as jd)
! kp - units of output pressure (integer) (=1,2 or 3 as jp)
! ke - type of output energy variable (integer) (=1,2,3 or 4, as je)
! ks - type of species variable (integer) (=1,2, or 3, as js)

! dout - output density (double)
! pout - output pressure (double)
! eout - output energy variable (double)
spout- output species variables (length ns, double)

subroutine cisave( nrec )
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! Force checkpointing of ISATAB table
! inout: none

! output:
! nrec - number of records in table (integer)

subroutine dtchem( t, kspec, nspec, specO, press, kht, ht,
1 modecp, modeit, spect, temp, dens )

I ISAT-CK routine to determine thermochemical composition after
I isobaric, reaction for a specified time interval.

! input:

! t - time interval (seconds)

! kspec - representation of species

! = 1 - mole fractions

! = 2 - mass fractions

! = 3 - specific mole numbers

! nspec - number of species

! specO - initial species vector (length nspec)

! press - pressure (Chemkin units)

! kht - type of second thermodynamic variable

! = 1 - enthalpy (Chemkin units)

! = 2 - temperature (K)

! ht - initial value of second thermodynamic variable
! modecp - not used (retained for backward compatibility)
! modeit = 6 - direct integration

! = 7 - ISAT

I output:

! ht - final value of second thermodynamic variable
! spect - final species vector (length nspec)

! temp - final temperature

! dens - final density (Chemkin units)

! notes:

! 1/ All reals are double precision.

! 2/ Units are those used in Chemkin.

! 3/ If this routine is called, then ciinit should not be called.
! 4/ The file streams.in is used if it exists, but the value of



37

! modeci specified in streams.in is ignored: the value is taken
! from the argument modeit.
! 5/ The enthalpy changes solely due to radiative heat loss (if at all).

9 Subroutine usrate

The trivial version of the subroutine usrate is:

subroutine usrate( ns, p, t, y, liwk, lrwk,
1 ickwrk, rckwrk, wdot )

! User routine to specify reaction rates. This version calls (and is
! functionally equivalent to) the Chemkin routine ckwyp.

! input:

! ns - number of species

! P - pressure (Chemkin units)

! t - temperature (K)

! y - species mass fractions

! liwk - dimension for Chemkin integer array ickwrk
! lrwk - dimension for Chemkin double-precision array rckwrk
! ickwrk - Chemkin integer array

! rckwrk - Chemkin double-precision array

I output:

! wdot - reaction rates in molar units

integer ns, liwk, lrwk, ickwrk(liwk)
double precision p, t, y(ns), rckwrk(lrwk), wdot(ns)

call ckwyp( p, t, y, ickwrk, rckwrk, wdot )

return
end
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10 Input Files

10.1 The File streams.in for modeci=1

! Specification of the file streams.in for modeci =1

! 1st record: modeci
! 2nd record: density

10.2 The File streams.in for modeci=2

! Specification of the file streams.in for modeci = 2 and 3

! 1st record: modeci

! 2nd record: nstr - number of streams

! 3rd record: nfull - number of variables in full representation

! modeci=3 only:

! 4th record: trxn3 - reaction time scale

! next nstr records: £, dens, p, T, c(1), c(2),...,c(nfull)

! optionally, next nfull records:

! names of variables in full representation (character*10)
! notes:

! 1/ f denotes mixture fraction (modeci=2) and reaction progress

! variable (modeci=3).

! 2/ the values of f of the streams must be strictly increasing.

! 3/ properties are linearly interpolated in f.

! 4/ the specific volume (1/dens) is linearly interpolated, not dens.
! 5/ for modeci=3 the reaction is:

! db/dt = -b/trxn3, where b = ( fmax - £ ) / ( fmax - fmin )

10.3 The File streams.in for modeci=6 or 7

! Specification of the file streams.in for modeci = 6 and 7
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! 1st record - modeci

! 2nd record - nstr, nsin

! nstr - number of streams (integer)

! nsin - number of non-zero species (integer)

! subsequent - k, p, T, c(1), c(2),...,c(nsin)

! k = 1 if stream is as stated (integer)

! k = 2 if stream is an equilibrium mixture with the
! same elemental composition, pressure and

! enthalpy as that stated.

! ) - pressure in atm (real)

! T - temperature in K (real)

! c(i) - composition in relative volume/mole units (real)

10.4 The File rad.in

! Specification of the file rad.in

!' 1st line: nrad number of species tabulated

! 2nd line: tback background temperature (K)

! next nrad lines: symrad(j), augrad(j) (a16, 4x, 1pel3.4)

! symrad - Chemkin symbol of radiating species

! augrad - augmentation factor (=1.0 for normal usage)
! If augrad(j)=0, then the correspond species j

! will not be considered in the radiation calculation
! next ntemp lines: t(i), (apc(i,j),j=1,nrad)

! t(i) -- temperature (K)

! apc(i,j) -- Plank Mean Absorption Coeff. 1/(m kPa)

! (Radiation can be supressed by setting nrad=0)
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Part 111
ISATAB USER’S GUIDE

11 Introduction

11.1 Overview

ISATAB is a Fortran library which implements the ISAT algorithm (In Situ Adaptive
Tabulation! ) for a general function f(x). The subroutine isatab is called many times
by the user’s program with different values of x, and the routine returns (a good
approximation to) f(x). The user must provide a subroutine to evaluate f(x) and its
derivatives. The name of this subroutine is arbitrary, but for definiteness we call it
usrfgh.

11.2 Simple Usage

The independent variable x has n, components, i.e., x = x1,%2,...,%y,; and similarly
the dependent variable f has ny components, i.e., f = f1, fa,..., fn,. The gradient of
f at x is denoted by g(x) which has components

of;

9ij = 3—$]

(7)

For given x, the user-provided subroutine usrfgh returns the value of f(x) and, if so
required, the value of g(x). The complete specification of usrfgh is given in Section
17.

In the user’s program, f(x) is to be evaluated many times for different values of
x. This could be accomplished by calling usrfgh — which is referred to as direct
evaluation. The objective of ISATAB is to produce (almost) the same effect, but at
a substantially reduced computational cost (measured in CPU time). Thus a call to
isatab yields an approximate value of f(x). The error in this approximation can be
controlled through the specification of an error tolerance (see Section 14.3 for details).
The complete calling arguments to isatab are described in Section 16.

!see S.B. Pope, “Computationally efficient implementation of combustion chemistry using in situ
adaptive tabulation”, Combustion Theory and Modelling, 1:41, 1997
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11.3 Ellipsoids of Accuracy

To understand the general usage of ISATAB it is necessary to understand the ellipsoids
of accuracy (EOA) used in the ISAT algorithm. The basic tabulation element is a
hyper-ellipsoid, whose center is denoted by x°. The information stored for the element
consists of: x°; f* = f(x°); g = g(x°); and the principal axis of the EOA. Based on
this information, a linear approximation to f(x) is

L= 1+ g (x — ). (8)

The EOA is constructed so that, within the EOA, f¢ is an adequate approximation
to f(x). Thus ISATAB uses this piecewise-linear approximation to f(x).

11.4 General Usage

In addition to returning f’, isatab (on request) returns g — which is a piecewise-
constant approximation to g(x) within the EOA.

With h = {hy,hs,...,hy,} being a second user-specified function, isatab (on
request) also returns h® = h(x°). Again, this is a piecewise-constant approximation
to h(x) within the EOA.

Note that £¢ is a piecewise-linear approximation, the error in which is controlled.
In contrast g and h® are piecewise-constant approximations without (direct) error
control.

ISATAB is capable of tabulating any number of different functions by constructing a
separate table for each function. In general we can consider f (]) to be the kth function,
consisting of ngck) components and depending on n;(,;k) independent variables. The first
argument of isatab is the positive integer idtab which is the identifier of the table

(i.e., k). For each different table, a different user-defined function usrfgh can be used.

11.5 Fortran Considerations
ISATAB is written in Fortran 90, and the call to isatab conforms to the Fortran 77
standard.

All real variables are double precision.

Most names (of files and routines) have isat as the first four characters. Hence
such names should be avoided in the user’s program to avoid name conflicts.

ISATAB uses logical units (which are not already in use) in the range 60 <= lu
<= 99. A conflict can arise if the user’s program uses a logical unit that is being used
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by ISATAB. The range used by ISATAB can be changed to, for example, 71 <= lu
<= 88 by setting the file isat.nml to: &isat nml

luf=71

1ul=88

/

ISATAB includes an optional MPI implementation. However, this is not described
here, nor is it supported.

12 Installation and Testing

12.1 The ISATAB Directory

The result of performing the installation is to produce a directory ISATAB which con-
tains (at least) the following files:

isatab_ser.a the ISATAB Fortran library

isat.key the license key

isatab_ug.ps the postscript file of this User Guide

isatab.txt a text file containing a summary of ISATAB
operation and arguments

testser.£90 a test program

fghex.£90 the subroutine usrfgh used by the test program

isat_rnu.f90 a subroutine called by testser.f90

Makefile the makefile to generate the executable testser

testser.op the correct output from testser

isat.m a Matlab script that can be used to examine
isat_op.1

dispr.m a Matlab script called by isat.m

12.2 License Key

The Unix variable ISATKEY must be set to the location of the license key, e.g., ISAT/ISATAB/isat .key.
This is best done in the user’s login script. Using csh the appropriate command is:

setenv ISATKEY ISAT/ISATAB/isat.key

Using bash it is:
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export ISATKEY=ISAT/ISATAB/isat.key

12.3 Testing

The test program testser is provided to test the correct operation of ISATAB. To cre-
ate the executable, on the directory ISAT/ISATAB type make. Then, execute testser
> t.op (which should take about 10 seconds). The output file t.op can be compared
to the reference output file testser.op. The only differences should be in format and
due to round-off error differences.

12.4 Linking ISATAB with User’s Code

The makefile ISAT/ISATAB/Makefile provides a model for linking ISATAB with a user
program. In addition to the ISATAB library isatab_ser.a it is necessary also to link
the lapack library and any libraries (e.g. blas) required by lapack.

13 Overview of the ISAT Algorithm

In order to use ISATAB effectively, it is useful to have an understanding of the ISAT
algorithm, so that various parameters can be set appropriately.

The EOA’s are stored in a specified number (n; =ntree) of binary trees. Each leaf
of a tree is an EOA: each node corresponds to a cutting plane in x-space.

Each call to isatab is referred to as a query. On each query, ISATAB attempts to
find an EOA that contains the query point x. If such an EOA is found, then the linear
approximation is returned. This outcome is designated a retrieve.

If the query is not fulfilled by a retrieve, then a direct evaluation of f(x) is per-
formed. Based on this value, some EOA’s are examined to determine if the linear
approximation based on f and g is sufficiently accurate. If it is, then that EOA is
“grown” to include the query point. This outcome is referred to as a grow.

If the query is not satisfied by a grow then a new EOA is added; and the outcome
is referred to as an add.

14 Control of ISATAB

The operation of ISATAB is controlled primarily through the integer array info and
the real array rinfo that are arguments in the call to isatab. For example, info(5)
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specifies the storage (in Mbytes) to be allowed for the table. A full specification of
the elements of these arrays is given in Section 16. Expert users can also alter some
internal ISATAB settings through entries in the optional namelist file isat.nml (as
illustrated in Section 11.5).

14.1 Scaling

ISATAB works with scaled variables z; = x; /mj and fl = fi/f; where z; and f} are
specified, strictly positive, scale factors. By default (info(1) = 0) these scale factors
are unity.

For best performance of ISATAB, the scale factors should be chosen so that dif-
ferences in the scaled variables are of order unity. In particular, the elements of the
scaled gradient matrix

off
o} = o )

should not be large compared to unity.

The scale factors can be set (different from unity) by setting info(1)=1, rinfo (20+i)
= z; and rinfo(20+nx+j)=/f.

14.2 Transformation of Variables

Because of the piecewise-linear approximation used, ISATAB works best if f is approx-
imately linear in x. The user should consider whether a transformation of variables
(prior to calling isatab) can be used to reduce the level of non-linearity.

14.3 Error Tolerance

The error in the (scaled) linear approximation is defined to be
e= i — (10)

where, on the right-hand side, the scaled values of £ and f° are defined in an obvious
way. This error is deemed to be acceptable if it is less than the tolerance

Etol = E€q t+ 57‘|f|7 (11)

where €, and ¢, are the specified absolute and relative error tolerances. These are set
in rinfo(1) and rinfo(2), respectively.

The specification of the error tolerance is crucial to the accurate and efficient use
of ISATAB. The following should be considered in every new application.
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1. Obviously, the smaller the error tolerance, the more accurately ¢ approximates
f.

2. Specifying too small an error tolerance degrades performance because:

(a) a larger table is needed to achieve peak performance (i.e., nearly all re-
trieves)

(b) more time is needed to build the larger table
(c) for given storage (and therefore maximum allowed table size) the table be-

comes full more quickly, resulting in more queries that cannot be fulfilled
by retrieves.

3. The acceptable error depends on the application. Tests should be performed to
determine the largest acceptable error tolerance.

14.4 Checkpointing

Setting info(3)=1 causes the ISAT table to be checkpointed periodically to the file
isat_dat.1 (for table number 1). In a subsequent execution of the user’s program,
ISATAB starts from the previously-generated table (read from isat_dat.1) if info(2)
is set to 1. At any time, the checkpoint file can be written by calling istab with
info(9)=1.

In general, ISATAB should be started from a checkpoint file only if the conditions
of the two runs are identical.

14.5 Treatment of a Full Table

It is generally found that the ISAT table grows continually, even after a huge number
of queries, albeit at a decreasing rate. Consequently, a table with a maximum allowed
amount of storage will eventually become full. That is, additional EOA’s cannot be
added.

Two options are provided for this eventuality.

1. For info(11)=0, no new EOA’s are added, and a query that cannot be fulfilled
by a retrieve is fulfilled by a direct evaluation.

2. For info(11)=1, ISATAB continues to add new EOA’s, by first removing existing
EOA’s. (This outcome is referred to as a replace.)

Which option is preferable depends on the nature of the problem at hand.
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14.6 Number of Trees

The EOA’s are stored in a specified number (n;) of binary trees. In attempting to
retrieve, ISATAB examines up to n; EOA’s to see if the query point is contained within
it.

The value of n; can be set in info(5). (For the default setting info(5)=0, n; is
set to 4.) The optimal value of n; is problem dependent. For simple problems n;=1
may be optimal, since it yields the minimum retrieve time. Larger values of n; yield

slower retrieve times, but lead to smaller tables. Consequently less storage is required,
and less time is needed to build the table.

14.7 Approximation of Derivatives

Large errors can result if values of f(x) are used in finite-difference approximations to
derivatives such as (in the simplest scalar case)

f'(z) = [f(z + ) = f(z = h)]/(2h). (12)

This is because in ISATAB f(z+h) and f(z—h) could be obtained from different EOA’s,
and could differ by £4,. Hence an error of order ¢;,/h in the approximation of f'(x)
can arise. Instead, for accuracy and efficiency, the piecewise-constant approximation
g?(x) should be used. The error in this approximation (in the simplest case) can be

estimated to be of order [stolf”(x)]%.

14.8 The Namelist File isat.nml

Expert users can change some default settings through the namelist file isat.nml.

The real variable chk_inc (default value 1.2) controls the frequency of the table
checkpointing. For info(3)=1, the table is checkpointed when the number of leaves is
chk_inc times the number of leaves on the previous checkpointing.

Setting if_flush=1 (default value 0) causes the output files to be flushed.

The logical variable grow_linear (default .false.) controls the returned value
fa on a grow. The usual behavior (grow_linear = .false.) is to return the value
of f obtained from direct evaluation. But for (grow_linear = .true.) the linear
approximation £’ is returned instead.
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15 Output from ISATAB

15.1 Overview of Files

When ISATAB is used for a single table (with idtab=1), the following input and output
files may be used.

1. isat_dat.1 — input/output file used (optionally) for checkpointing: see Section

14.4
2. isat_log.1 — output log file
3. isat_op.1l — output file containing statistics of ISATAB operation

4. isat.nml — optional namelist input file (for expert users only)

For each table considered (i.e., for each value of idtab) there may be corresponding
output files. For example, the log file corresponding to idtab=7 is isat_log.7.

15.2 Log File isat_log.1

This file should be examined when ISATAB is first applied to a new problem, or when
there is an error condition. The file lists:

1. the principal input arguments to isatab, including the arrays info and rinfo

2. the array rinfoi which contains the values specified in rinfo but with default
values set

3. the maximum number of table entries (i.e., EOA’s) allowed given the specified
amount of storage.

15.3 ISATAB Statistics

For idtab=1, the output file isat_op.1 is produced if info(1) is set to 1. Setting
rinfo(6)=1.0 — which is not recommended — produces one line of output for each
query (i.e., each call to isatab). The output frequency can be reduced by increasing
the value of rinfo(6): the default is rinfo(6)=1.02.

Each line of isat op.1 consists of statistics of ISATAB’s performance for the query
(that generates the line of output), and also cumulative statistics. For example, the first
four entries are the total numbers of queries, retrieves, grows and adds, respectively.
The full details of the file isat_op.1 are given in Section 16.5.
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The Matlab script file isat .m is provided to process isat_op.1. This yields graph-
ical output, and also the file isat_stats which summarizes ISATAB’s performance.



Part IV
ISATAB REFERENCE MANUAL

16 Arguments of isatab

The call to isatab is:
call isatab( idtab, nx, x, nf, nh, nhd, usrfgh,
iusr, rusr, info, rinfo, fa, ga, ha, stats)

All real variables are double precision.

16.1 Input Arguments

idtab integer: positive integer that identifies the function being
tabulated. For a single table it is recommended to use
idtab=1.

nx integer: ng, number of components of x

X real(nx): components of x

nf integer: n s, number of components of £

nh integer: nj, number of components of h

nhd integer: dimension of array ha (nhd >= max(1,nh))

usrfgh name of the user-supplied subroutine that, given x, returns

values of f(x), g(x), and h(x)

iusr integer(*), optional input: user-defined integer array passed to
usrfgh

Tusr real(*), optional input: user-defined real array passed to
usrfgh

info integer(20): integer array controlling ISATAB performance

(see Section 16.3 for details)

rinfo real(20+nx+nf): real array controlling ISATAB performance
(see Section 16.4 for details)

16.2 Output Arguments

fa real(nf): piecewise-linear approximation to f(x)
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ga real(nf,nx): piecewise-constant approximation to g(x), which
is returned only for info(7)=1. ga(i,j) is the approximation
to 8fz / a(IIj.

ha real(nhd): piecewise-constant approximation to h(x)

stats real(50): statistics of ISATAB performance, which are returned

only for info(10)>0 (see Section 16.5 for details)

16.3 Input Array info

Shown below for each component of info is the corresponding local variable name
(e.g., info(1) = iscale) and its definition. All default values of info are zero. Items
marked * cannot be changed after the first call for a given table (i.e., for a given value
of idtab), but they may be different for different tables. The value of idtab is denoted

by #.

*info(1)=iscale For iscale=0, 27 = xscale(i) and [} =
fscale(j) are taken to be unity; for iscale=1,
xscale(i) and fscale(j) are taken from rinfo.

*info(2)=ichin For ichin=0, the table is created from scratch; for
ichin=1, the initial table is read from the file
isat_dat.#.

*info(3)=ichout Set ichout=1 to checkpoint the table occasionally.

*xinfo(4)=isatop Set isatop=1 for generate ISATAB performance
output on the file isat_op.#.

xinfo(5)=ntree ntree = n; is the number of trees to be used. If
ntree is set to zero, then the default ntree=4 is
used.

info(6)=noisat Set noisat=1 to suppress ISATAB operation, in

which case fa is obtained by direct evaluation
from usrfgh. (This option is for testing only.)

info(7)=1ifdfdx Set ifdfdx=1 if g® (the approximation to g(x)) is
to be returned in ga.

info(8)=idites Set idites=1 to perform accuracy testing even if
the query point lies inside an EOA. (This option
is for testing only.)

info(9)=ichfrc Set ichfrc=1 to force checkpointing, and return
immediately. On a call with ichfrc=1, the value
of fa is not returned.
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info(10)=istats Set istats=1 to return statistics in array stats,
as well as performing normal ISATAB operations:
set istats=2 to return statistics in array stats
without performing normal ISATAB operations.

*info(11)=ifull Determines the action taken when the table
becomes full and an “add” is indicated. For
ifull=0, no new EOA’s are added, and the query
is resolved by direct evaluation: for ifull=1, an
old EOA is deleted, and the new one is added.

*info(12)=kcpv The value of kcpv determines how the cutting
planes in the binary tree are generated. Valid
values are 0, 1, 2 and 3, with 0 being the default.

info(13)=kill Set kill=1 to delete the table (to free memory for
other purposes).

info(14-16) These values should be set to zero.

info(17=noadd) Set noadd=1 to prevent adding to the table. If

the query cannot be resolved by a retrieve, then it
is resolved by direct evaluation.

info(18-20) These values should be set to zero.

16.4 Input Array rinfo

Shown below for each component of rinfo is the corresponding local variable name
(e.g., rinfo(1)=etola) and its definition. A strictly positive value of rinfo(1) must
be supplied. For other components, if zero is specified, then a default value is used.
Items marked * cannot be changed after the first call for a given table (i.e., for a given
value of idtab), but they may be different for different tables.

*rinfo(l)=etola The specified absolute error tolerance, ¢,, which
must be strictly positive. A value must be
specified: there is no default.

*rinfo(2)=etolr The specified relative error tolerance, €,. The
default value is etolr=0.

*rinfo (3)=dxsmax The maximum allowed size of an EOA. In the
scaled x-space, this is the greatest allowed value of
a principal axis of an EOA. This can be specified
to prevent spurious EOA growth beyond a
reasonable limit. The default value is dxsmax=0.1.
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*rinfo(4)=dxsOmx

*rinfo(5)=stomby

*rinfo(6)=outinc

rinfo(7:20)

*rinfo(20+1)

*rinfo (20+nx+j)
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The maximum allowed initial size of an EOA. In
the scaled x-space, this is the greatest allowed
value of an initial principal axis of an EOA. The
default value is dxsOmx=0.1. If dxsOmx=0.0 is
specified, then a different default value is used
based on etola and dxsmax.

The maximum storage (in megabytes) allowed for
the ISATAB table. For best performance, specify

the largest value that the computer system allows
without paging. The default value is stomby=50.

This controls the frequency of output onto the file
isat_op.#. For outinc=1.0, there is one line of
output for each query—which is likely to generate
a huge file. To decrease the output frequency,
increase outinc. The default is outinc=1.02.

These are not used, but are reserved for future
use.

The scale factors zf for 1 = 1,2,...,n;. These are
required only for info(1)=1, and must be strictly
positive.

The scale factors f7 for j =1,2,...,ny. These are
required only for info(1)=1, and must be strictly
positive.

16.5 Owutput Array stats

On “regular” calls to isatab (and for info(10)>0), the array stats is returned, and it
is written to the output file isat_op.# (for info(4)=1). (It is not returned on “special”
calls, namely when ISAT is by-passed (info(6)=1), or when the table is checkpointed
(info(9)=1) or killed (info(13)=1).) The following shows the corresponding local
variable names (e.g., stats(1)=queries) and their significance.

stats(l)=queries
stats(2)=retrieves
stats(3)=grows
stats(4)=adds

stats(5)=replaces

total number of queries

total number of queries resulting in retrieves
total number of queries resulting in grows
total number of queries resulting in adds

total number of queries resulting in replaces
(because the table is full and ifull=1)
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stats(6)=dir_eval

stats(7)=last

stats(8)=trees
stats(9)=ntrees
stats(10)=leaves

stats(11)=nleaves

stats(12)=min_leaves
stats(13)=max_leaves
stats(14)=max _depth
stats(15)=traverses
stats(16)=trav_nodes
stats(17)=ngrows

stats(18)=errsq
stats(19)=tolsq

stats(20)=sincef

stats(21)=sinceg

stats(22)=cpu_sec
stats(23)=cpu_cum

stats(24)=cpu_out

stats(25)=cpu_ret
stats(26)=cpu_grow
stats(27)=cpu-add

stats(28)=cpu_rep

total number of queries resulting in direct
evaluation (because the table is full and iful1=0)

action on last query: 2=retrieve, 3=grow, 4=add,
5=replace, 6=direct evaluation

number of non-empty trees
number of trees specified, n;
number of leaves (and EOA’s) in the table

maximum number of leaves (and EOA’s) allowed
in the table

minimum (over trees) number of leaves
maximum (over trees) number of leaves
maximum (over trees) of tree depth

total number of traverses performed

total number of nodes encountered in traverses
total number of EOA’s that have been grown

the square of the error on the last EOA accuracy
test

the tolerance (squared) on the last EOA accuracy
test

number of queries since usrfgh was last called to
evaluate f(x)

number of queries since usrfgh was last called to
evaluate g(x)

cpu seconds for this call
cumulative cpu seconds in isatab (for this table)

cumulative cpu seconds outside isatab (for this
table)

cumulative cpu seconds spent on retrieves
cumulative cpu seconds spent on grows
cumulative cpu seconds spent on adds

cumulative cpu seconds spent on replaces
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stats(29)=cpu_dev cumulative cpu seconds spent on direct
evaluations

stats(30:46) reserved

stats(47)=errsqmax square of the maximum (over retrieves) error on

EOA accuracy tests: significant only for info(8)=1

stats(48:50) reserved

17 Arguments of usrfgh

A subroutine (referred to here as usrfgh) must be provided to evaluate (on request)
f(x), g(x) and h(x). The calling sequence is:

call usrfgh( need, nx, x, nf, nh, jiusr, rusr, fa, ga, ha )
All real arguments are double precision. The arguments are as follows:

need integer(3), input: the values of need indicate whether or not
f(x), g(x) and h(x) need to be evaluated. For need(1)=0,
f(x) does not need to be evaluated: for need(1)=1, f(x) needs
to be evaluated. Similarly, need(2)=1 and need (3)=1 indicate
that g(x) and h(x), respectively, need to be evaluated.

nx integer, input: n,, number of components of x

X real(nx), input: components of x

nf integer, input: ny, number of components of f

nh integer, input: n,, number of components of h

iusr integer(*), optional input: user-defined integer array passed
through isatab

rusr real(*), optional input: user-defined real array passed through
isatab

fa real(nf), output: components of f(x) which must be returned
if need(1)=1

ga real(nf,nx), output: components of g(x) which must be

returned if need(2)=1; ga(i,j)=0f;/0z;

ha real(nhd), output: components of h(x) which must be
returned if need(3)=1



